COORDINATE CHANGE EIGENVALUES FOR BIMODAL PERIOD-DOUBLING RENORMALIZATION

被引:1
|
作者
MACKAY, RS
PINTO, AA
VANZEIJTS, JBJ
机构
[1] UNIV PORTO, OPORTO, PORTUGAL
[2] CEBAF, NEWPORT NEWS, VA 23606 USA
关键词
D O I
10.1016/0375-9601(94)90725-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coordinate change eigenvalues for the MacKay and van Zeijts period doubling renormalisation operator for bimodal 1D maps are derived. They are found in numerical computations of the spectrum at all the periodic orbits of renormalisation of period up to five.
引用
收藏
页码:412 / 416
页数:5
相关论文
共 50 条
  • [21] Local symmetries in the period-doubling sequence
    Damanik, D
    DISCRETE APPLIED MATHEMATICS, 2000, 100 (1-2) : 115 - 121
  • [22] PERIODIC PERTURBATION ON A PERIOD-DOUBLING SYSTEM
    HORNER, H
    PHYSICAL REVIEW A, 1983, 27 (02): : 1270 - 1271
  • [23] INFLUENCE OF PERTURBATIONS ON PERIOD-DOUBLING BIFURCATION
    SVENSMARK, H
    SAMUELSEN, MR
    PHYSICAL REVIEW A, 1987, 36 (05): : 2413 - 2417
  • [24] A period-doubling bifurcation for the Duffing equation
    Komatsu, Y
    Kotani, S
    Matsumura, A
    OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (03) : 605 - 627
  • [26] CONNECTING PERIOD-DOUBLING CASCADES TO CHAOS
    Sander, Evelyn
    Yorke, James A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [27] Period-doubling of spiral waves and defects
    Sandstede, Bjorn
    Scheel, Arnd
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02): : 494 - 547
  • [28] Observation of Period-Doubling Bloch Oscillations
    Khan, Naveed
    Wang, Peng
    Fu, Qidong
    Shang, Ce
    Ye, Fangwei
    PHYSICAL REVIEW LETTERS, 2024, 132 (05)
  • [29] Topological invariants in period-doubling cascades
    Letellier, C
    Meunier-Guttin-Cluzel, S
    Gouesbet, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (09): : 1809 - 1825
  • [30] MORPHOLOGY OF THE PERIOD-DOUBLING UNIVERSAL FUNCTION
    WARNER, RC
    DELBOURGO, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (02) : 758 - 770