NUMERICAL COMPUTATION OF SYMMETRY-BREAKING BIFURCATION POINTS

被引:4
|
作者
ATTILI, BS
机构
关键词
D O I
10.1017/S0334270000007293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider symmetry-breaking bifurcation points which arise in parameter-dependent nonlinear equations of the form f (x,lambda) = 0. These types of bifurcation points are connected to pitchfork bifurcation points. A direct method is used to compute such points. Multiple shooting is used to discretise the two-point boundary-value problems to obtain a finite-dimensional problem.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [31] Symmetry-breaking and bifurcation diagrams of fractional-order maps
    Danca, Marius -F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [32] A symmetry-breaking inertial bifurcation in a cross-slot flow
    Poole, R. J.
    Rocha, G. N.
    Oliveira, P. J.
    COMPUTERS & FLUIDS, 2014, 93 : 91 - 99
  • [33] Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction
    Riccardo Adami
    Diego Noja
    Communications in Mathematical Physics, 2013, 318 : 247 - 289
  • [34] Normal form for the symmetry-breaking bifurcation in the nonlinear Schrodinger equation
    Pelinovsky, D. E.
    Phan, T. V.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) : 2796 - 2824
  • [35] Symmetry-breaking bifurcation for the ono-dimensional Henon equation
    Sim, Inbo
    Tanaka, Satoshi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [36] Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction
    Adami, Riccardo
    Noja, Diego
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) : 247 - 289
  • [37] Symmetry-Breaking Bifurcation in the Nonlinear Schrodinger Equation with Symmetric Potentials
    Kirr, E.
    Kevrekidis, P. G.
    Pelinovsky, D. E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (03) : 795 - 844
  • [38] Symmetry-breaking bifurcation in a vertical grating-waveguide coupler
    Delque, M.
    Dewandre, A.
    Huy, K. Phan
    Gorza, S. -P.
    Haelterman, M.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2744 - 2745
  • [39] SYMMETRY-BREAKING BIFURCATION IN THE SYSTEM OF DISSIPATIVELY COUPLED RECURRENT MAPPINGS
    KUZNETSOV, SP
    PIKOVSKIJ, AS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (01): : 49 - 54
  • [40] Symmetry-breaking bifurcation for the Moore-Nehari differential equation
    Kajikiya, Ryuji
    Sim, Inbo
    Tanaka, Satoshi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (06):