ON APPROXIMATION BY BIVARIATE INCOMPLETE POLYNOMIALS

被引:0
|
作者
KROO, A
机构
[1] Mathematical Institute of the, Hungarian Academy of Sciences, Budapest, H-1053
关键词
MUNTZ POLYNOMIALS; INCOMPLETE POLYNOMIALS; BERNSTEIN POLYNOMIALS;
D O I
10.1007/BF01263064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that given certain convex domains DELTA on the plane, epsilon > 0, and f is-an-element-of C(DELTA) such that f = 0 on theta2DELTA = {(theta2x, theta2y): (x, y) is-an-element-of DELTA} (0 < theta < 1), a polynomial p(x, y) of the form [GRAPHICS] exists such that \\f - p\\C(DELTA) less-than-or-equal-to epsilon. The admissible convex domains include triangles and parallelograms with a vertex at the origin and sections of unit disk.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 50 条
  • [21] Scattered data interpolation and approximation using bivariate C-1 piecewise cubic polynomials
    Lai, MJ
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (01) : 81 - 88
  • [22] Bivariate affine Goncarov polynomials
    Lorentz, Rudolph
    Yan, Catherine H.
    DISCRETE MATHEMATICS, 2016, 339 (09) : 2371 - 2383
  • [23] On the bivariate permanent polynomials of graphs
    Liu, Shunyi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 148 - 163
  • [24] Bivariate Extension of Bell Polynomials
    Zheng, Yuanping
    Li, Nadia N.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (08)
  • [25] Approximation of the actual spatial distribution of the b-matrix in diffusion tensor imaging with bivariate polynomials
    Klodowski, Krzysztof
    Lukasik, Piotr
    Krzyzak, Artur T.
    PROCEEDINGS OF THE 2016 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2016, 8 : 943 - 946
  • [26] Accurate evaluation of bivariate polynomials
    Du, Peibing
    Jiang, Hao
    Li, Housen
    Cheng, Lizhi
    Yang, Canqun
    2016 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT), 2016, : 51 - 56
  • [27] PROBABILISTIC BIVARIATE BELL POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2025,
  • [29] Bivariate Mersenne polynomials and matrices
    Vieira Alves, Francisco Regis
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 83 - 95
  • [30] On the bivariate Padovan polynomials matrix
    Diskaya, Orhan
    Menken, Hamza
    Catarino, Paula Maria Machado Cruz
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (03) : 407 - 420