GEOMETRY AND VIBRATIONAL FREQUENCIES OF THE LITHIUM TRIFLATE ION-PAIR - AN AB-INITIO STUDY

被引:41
|
作者
GEJJI, SP [1 ]
HERMANSSON, K [1 ]
TEGENFELDT, J [1 ]
LINDGREN, J [1 ]
机构
[1] UNIV UPPSALA,INST CHEM,BOX 531,S-75121 UPPSALA,SWEDEN
来源
JOURNAL OF PHYSICAL CHEMISTRY | 1993年 / 97卷 / 44期
关键词
D O I
10.1021/j100146a011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optimized geometry, harmonic vibrational frequencies, and infrared absorption intensities of the lithium trifluoromethanesulfonate (triflate) ion pair, CF3SO3-Li have been investigated using the ab initio self-consistent Hartree-Fock and correlated second-order Moller-Plesset perturbation theory with the 6-31G* and lower basis sets. In the optimized structure the lithium cation is bound to two of the oxygens of the SO3 group forming a bidentate complex with C(s) symmetry. A local minimum with a monodentate structure was obtained in the HF/3-21G* calculations. The energy difference between the mono- and bidentate structures of the complex is predicted to be nearly 39 kJ mol-1 in this basis. A splitting of 230 and 158 cm-1 is obtained for the antisymmetric SO3 stretching for the bi- and monodentate coordination of the lithium cation with the free anion, respectively. The infrared spectrum of lithium triflate in poly(propylene oxide) shows a splitting of 43 cm-1. The strong interaction of the metal cation with the anion in the 1:1 complex thus overemphasizes the ''splitting behavior'' observed for lithium triflate dissolved in polymers. In the bidentate (MP2/6-31G*) complex the symmetric SO3 stretching shows a downshift of 38 cm-1, in contrast to an upshift of 47 cm-1 for the monodentate complex. The different signs of these frequency shifts have a purely geometric origin. The dependence of this frequency shift on the position of the Li+ ion is discussed.
引用
收藏
页码:11402 / 11407
页数:6
相关论文
共 50 条
  • [31] AB-INITIO CALCULATED ENERGIES AND VIBRATIONAL FREQUENCIES OF 3-AZIDOPROPENE (ALLYLAZIDE)
    GATIAL, A
    BISKUPIC, S
    KLAEBOE, P
    NIELSEN, CJ
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1995, 191 : 145 - 157
  • [32] AB-INITIO PREDICTIONS OF THE LOWEST ELECTRONIC STATES, STRUCTURES VIBRATIONAL FREQUENCIES OF PHENYLPHOSPHINIDENE
    HAMILTON, TP
    WILLIS, AG
    WILLIAMS, SD
    CHEMICAL PHYSICS LETTERS, 1995, 246 (1-2) : 59 - 65
  • [33] Vibrational frequencies of proline and hydroxyproline - An ab initio study
    Tarakeshwar, P
    Manogaran, S
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1996, 365 (2-3): : 167 - 181
  • [34] FORMATION AND ISOMERIZATION MECHANISMS OF M(+)CO(2)(-) (M=LI, NA) ION-PAIR COMPLEXES - AN AB-INITIO MO AND RRKM STUDY
    TACHIKAWA, H
    TAKATORI, Y
    OHTAKE, A
    KUMAGAI, J
    YOSHIDA, H
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1995, 342 : 1 - 7
  • [35] The Geometry, Vibrational Frequencies and Thermodynamic Properties of Naphthalene Based on ab initio Calculation
    肖继梅
    贡雪东
    肖鹤鸣
    丘应楠
    分子科学学报, 1998, (03) : 50 - 55
  • [36] Ab initio quantum chemical calculations of geometry and vibrational frequencies of chlorine heptoxide
    Parthiban, S
    Raghunandan, BN
    Sumathi, R
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1995, 51 (14): : 2453 - 2458
  • [37] Ab initio Calculations of Vibrational Frequencies and Structures of Ion Pairs of Perchlorate
    Xuan Xiao-peng
    Xie You-hai
    Zhao Yang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (09) : 2537 - 2540
  • [38] An ab initio study of ion-pair formation from the third 1A′ state of ArHCl
    Sato, T
    Nobusada, K
    Tanaka, K
    CHEMICAL PHYSICS LETTERS, 2002, 363 (5-6) : 429 - 434
  • [39] The effect of lithium triflate and lithium bromide on the vibrational frequencies of DMEDA
    York, SS
    Boesch, SE
    Wheeler, RA
    Frech, R
    PHYSCHEMCOMM, 2002, 5 : 99 - 111
  • [40] Ab-initio Studies Of Lithium Oxide
    Gupta, M. K.
    Goel, Prabhatasree
    Mittal, R.
    Chaplot, S. L.
    INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010), 2010, 1313 : 358 - 360