LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEMES FOR THE FRACTIONAL DIFFUSION EQUATION WITH A FRACTIONAL DERIVATIVE IN LOWEST TERMS

被引:0
|
作者
Bazzaev, A. K. [1 ,2 ]
Tsopanov, I. D. [2 ]
机构
[1] North Ossetia State Univ, Vatutina St 46, Vladikavkaz 362025, Russia
[2] Vladikavkaz Inst Management, Vladikavkaz 362025, Russia
关键词
locally one-dimensional difference scheme; slow diffusion equation; Caputo fractional derivative; maximum principle; stability and convergence of difference schemes; Robin boundary conditions;
D O I
10.17377/semi.2015.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fractional diffusion equation with a fractional derivative in lowest terms with Robin boundary conditions, locally one-dimensional difference schemes are considered and their stability and convergence are proved.
引用
收藏
页码:80 / 91
页数:12
相关论文
共 50 条
  • [21] One-dimensional dispersion phenomena in terms of fractional media
    W. Sumelka
    R. Zaera
    J. Fernández-Sáez
    The European Physical Journal Plus, 131
  • [22] Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation
    Wang, Zhibo
    Vong, Seakweng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 : 1 - 15
  • [23] Unique Continuation Principle for the One-Dimensional Time-Fractional Diffusion Equation
    Zhiyuan Li
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2019, 22 : 644 - 657
  • [24] UNIQUE CONTINUATION PRINCIPLE FOR THE ONE-DIMENSIONAL TIME-FRACTIONAL DIFFUSION EQUATION
    Li, Zhiyuan
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (03) : 644 - 657
  • [25] FRACTIONAL DIFFUSION EQUATION ON FRACTALS - ONE-DIMENSIONAL CASE AND ASYMPTOTIC-BEHAVIOR
    GIONA, M
    ROMAN, HE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : 2093 - 2105
  • [26] An Efficient Technique for One-Dimensional Fractional Diffusion Equation Model for Cancer Tumor
    Archana, Daasara Keshavamurthy
    Prakasha, Doddabhadrappla Gowda
    Veeresha, Pundikala
    Nisar, Kottakkaran Sooppy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (02): : 1347 - 1363
  • [27] Approximate solutions of one-dimensional systems with fractional derivative
    Ferrari, A.
    Gadella, M.
    Lara, L. P.
    Santillan Marcus, E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (07):
  • [28] Two Novel Difference Schemes for the One-Dimensional Multi-Term Time Fractional Oldroyd-B Equation
    Guan Z.
    International Journal of Applied and Computational Mathematics, 2024, 10 (4)
  • [29] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
    Hu, Jiahui
    Wang, Jungang
    Nie, Yufeng
    Luo, Yanwei
    CHINESE PHYSICS B, 2019, 28 (10)
  • [30] Lattice fractional diffusion equation in terms of a Riesz-Caputo difference
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Deng, Zhen-Guo
    Zeng, Sheng-Da
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 335 - 339