A NEW COMPUTATION SCHEME FOR TRIANGULAR QUANTUM BILLIARDS

被引:2
|
作者
BELLOMO, P
机构
[1] School of Physics, Georgia Institute of Technology, Atlanta, 30332-0430, Georgia
来源
PRAMANA-JOURNAL OF PHYSICS | 1995年 / 44卷 / 02期
关键词
QUANTUM BILLIARDS; SPECTRAL STATISTICS; PSEUDOINTEGRABLE SYSTEMS; QUANTUM CHAOS; EIGENVALUES COMPUTATION;
D O I
10.1007/BF02847690
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new scheme for computing the eigenvalues and eigenstates of the Laplacian with Dirichlet boundary conditions on arbitrary triangular domains is presented. Its reliability is tested by comparing numerical results with analytical ones whenever possible. The computation of eigenvalues shows a good agreement with analytical results. The procedure is shown to give accurate results also in the case of eigenfunctions computation. Finally, the sensitivity of our scheme to the geometry of the domain is discussed and the algorithm is shown to detect small changes in the shape of the domain.
引用
收藏
页码:85 / 108
页数:24
相关论文
共 50 条
  • [41] Quantum chaos in billiards
    Baecker, Arnd
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 60 - 64
  • [42] A new model of quantum chaotic billiards: Application to granular metals
    Louis, E
    Verges, JA
    Cuevas, E
    Ortuno, M
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02): : 297 - 304
  • [43] New scheme for the computation of compressible flows
    Qamar, A
    Hasan, N
    Sanghi, S
    AIAA JOURNAL, 2006, 44 (05) : 1025 - 1039
  • [44] A new approach to quantum computation
    Yuen, HP
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 249 - 256
  • [45] Scheme for unconventional geometric quantum computation in cavity QED
    Feng, Xun-Li
    Wang, Zisheng
    Wu, Chunfeng
    Kwek, L. C.
    Lai, C. H.
    Oh, C. H.
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [46] Fibonacci scheme for fault-tolerant quantum computation
    Aliferis, Panos
    Preskill, John
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [47] Flexible scheme for the implementation of nonadiabatic geometric quantum computation
    Kang, Yi-Hao
    Shi, Zhi-Cheng
    Huang, Bi-Hua
    Song, Jie
    Xia, Yan
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [48] Three unequal masses on a ring and soft triangular billiards
    Oliveira, H. A.
    Emidio, G. A.
    Beims, M. W.
    CHAOS, 2012, 22 (02)
  • [49] Stability of classical electron orbits in triangular electron billiards
    Linke, H
    Christensson, L
    Omling, P
    Lindelof, PE
    PHYSICAL REVIEW B, 1997, 56 (03) : 1440 - 1446
  • [50] Ray splitting in a class of chaotic triangular step billiards
    Kohler, A
    Killesreiter, GHM
    Blumel, R
    PHYSICAL REVIEW E, 1997, 56 (03): : 2691 - 2701