DYNAMIC-SYSTEM FORMULATION OF THE EIGENVALUE MOMENT METHOD

被引:7
|
作者
HANDY, CR [1 ]
GIRAUD, BG [1 ]
BESSIS, D [1 ]
机构
[1] CENS, SERV PHYS THEOR, F-91190 GIF SUR YVETTE, FRANCE
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 03期
关键词
D O I
10.1103/PhysRevA.44.1505
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The eigenvalue moment method (EMM), a linear-programming (LP) based technique for generating converging bounds to quantum eigenenergies, is reformulated as an iterative dynamical system (DS). Important convexity properties are uncovered significantly impacting the theoretical and computational implementation of the EMM program. In particular, whereas the LP-based EMM formulation (LP-EMM) can require the generation and storage of many inequalities [up to several thousand for a 10-missing moment problem (m(s) = 10)], the dynamical-system formulation (DS-EMM) generates a reduced set of inequalities [of order O(m(s) + 1)]. This is made possible by replacing the LP generation of deep interior points (DIP's) by a Newton iteration process. The latter generates an optimal set of DIP's sufficient to determine the existence or nonexistence of the relevant missing moment polytopes. The general DS-EMM theory is presented together with numerical examples.
引用
收藏
页码:1505 / 1515
页数:11
相关论文
共 50 条
  • [21] Moment analysis on channel eigenvalue for DAS-to-DAS system
    Gwak, Donghyuk
    Jeon, Youngil
    Lee, Jemin
    Na, Jee-Hyeon
    ETRI JOURNAL, 2025, 47 (01) : 69 - 79
  • [22] A GSVD formulation of a domain decomposition method for planar eigenvalue problems
    Betcke, Timo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (03) : 451 - 478
  • [23] The formulation and numerical method for partial quadratic eigenvalue assignment problems
    Cai, Yun-Feng
    Qian, Jiang
    Xu, Shu-Fang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (04) : 637 - 652
  • [24] DYNAMIC CONDENSATION METHOD FOR STRUCTURAL EIGENVALUE ANALYSIS
    SUAREZ, LE
    SINGH, MP
    AIAA JOURNAL, 1992, 30 (04) : 1046 - 1054
  • [25] A Variant of the Second-Moment Method for k-Eigenvalue Calculations
    Woodsford, Connor
    Tutt, James
    Morel, Jim E.
    NUCLEAR SCIENCE AND ENGINEERING, 2024, 198 (11) : 2148 - 2156
  • [26] Dynamic system characterization via Eigenvalue orbits
    Marczyk, J
    Rodellar, J
    Barbat, AH
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (03) : 447 - 454
  • [27] QUALITATIVE DECOMPOSITION OF THE EIGENVALUE PROBLEM IN A DYNAMIC SYSTEM
    GARBELY, M
    GILLI, M
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1991, 15 (03): : 539 - 548
  • [28] Dynamic system characterization via eigenvalue orbits
    Marczyk, J.
    Rodellar, J.
    Barbat, A.H.
    Journal of Guidance, Control, and Dynamics, 22 (03): : 447 - 454
  • [29] Improved calculation of eigenvalue variation in dynamic system
    Liu, XL
    AIAA JOURNAL, 2001, 39 (09) : 1813 - 1816
  • [30] Dynamic system for solving complex eigenvalue problems
    Zhang, Q
    Leung, YW
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (05): : 455 - 458