Erythrocyte Features for Malaria Parasite Detection in Microscopic Images of Thin Blood Smear: A Review

被引:8
|
作者
Devi, Salam Shuleenda [1 ]
Sheikh, Shah Alam [2 ]
Laskar, Rabul Hussain [1 ]
机构
[1] Natl Inst Technol, Elect & Commun Engn, Silchar, Assam, India
[2] Silchar Med Coll & Hosp, Silchar, Assam, India
关键词
Medical imaging; erythrocyte; malaria parasite; erythrocyte features;
D O I
10.9781/ijimai.2016.426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microscopic image analysis of blood smear plays a very important role in characterization of erythrocytes in screening of malaria parasites. The characteristics feature of erythrocyte changes due to malaria parasite infection. The microscopic features of the erythrocyte include morphology, intensity and texture. In this paper, the different features used to differentiate the noninfected and malaria infected erythrocyte have been reviewed.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 50 条
  • [21] Malaria Cell Identification from Microscopic Blood Smear Images
    Adamjee, Uzair
    Ghani, Sayeed
    2019 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICICT 2019), 2019, : 82 - 86
  • [22] Malaria Parasite Detection From Peripheral Blood Smear Images Using Deep Belief Networks
    Bibin, Dhanya
    Nair, Madhu S.
    Punitha, P.
    IEEE ACCESS, 2017, 5 : 9099 - 9108
  • [23] Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images
    Xu, Tong
    Theera-Umpon, Nipon
    Auephanwiriyakul, Sansanee
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [24] Evaluation of Activation Functions in CNN Model for Detection of Malaria Parasite using Blood Smear Images
    Khadim, Ehsan Ullah
    Shah, Syed Attique
    Wagan, Raja Asif
    4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2, 2021, : 482 - 487
  • [25] Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
    Fetulhak Abdurahman
    Kinde Anlay Fante
    Mohammed Aliy
    BMC Bioinformatics, 22
  • [26] Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
    Abdurahman, Fetulhak
    Fante, Kinde Anlay
    Aliy, Mohammed
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [27] Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy
    Poostchi, Mahdieh
    Ersoy, Ilker
    McMenamin, Katie
    Gordon, Emile
    Palaniappan, Nila
    Pierce, Susan
    Maude, Richard J.
    Bansal, Abhisheka
    Srinivasan, Prakash
    Miller, Louis
    Palaniappan, Kannappan
    Thoma, George
    Jaeger, Stefan
    JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
  • [28] Plasmodium detection methods in thick blood smear images for diagnosing Malaria : A review
    Widiawati, Chyntia Raras Ajeng
    Nugroho, Hanung Adi
    Ardiyanto, Igi
    2016 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE), 2016, : 142 - 147
  • [29] Malaria infected erythrocyte classification based on a hybrid classifier using microscopic images of thin blood smear (vol 77, pg 631, 2017)
    Devi, Salam Shuleenda
    Roy, Amarjit
    Singha, Joyeeta
    Sheikh, Shah Alam
    Laskar, Rabul Hussain
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (01) : 661 - 662
  • [30] Deep learning method for malaria parasite evaluation from microscopic blood smear
    Dahiya, Abhinav
    Raghuvanshi, Devvrat
    Sharma, Chhaya
    Joshi, Kamaldeep
    Nehra, Ashima
    Sharma, Archana
    Jangra, Radha
    Badhwar, Parul
    Tuteja, Renu
    Gill, Sarvajeet S.
    Gill, Ritu
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2025, 163