SOME REMARKS ON THE EIGENVALUE PROBLEM FOR ZN SYMMETRICAL VERTEX AND FACE MODELS

被引:0
|
作者
ZHOU, YK
HOU, BY
机构
[1] FREE UNIV BERLIN, FACHBEREICH PHYS, W-1000 BERLIN 33, GERMANY
[2] NORTHWEST UNIV, INST MODERN PHYS, XIAN 710069, PEOPLES R CHINA
关键词
D O I
10.1016/0378-4371(92)90424-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue solution of the transfer matrix of Belavin's Z(n) symmetric vertex model is further extended to the case of the model with the crossing parameter omega = 1/L, here L is a nonzero positive integer. Then the so-called cyclic IRF model is defined and the eigenvalue solution of its transfer matrices is found. The eigenvalue spectrum of the IRF model at critical limit is shown to be the same as that of a modified many component six-vertex model. therefore the spectrums of both models are analysed with the quantum group SU(q)(n).
引用
收藏
页码:308 / 328
页数:21
相关论文
共 50 条
  • [31] STEKLOFFS EIGENVALUE PROBLEM - ISOPERIMETRIC INEQUALITIES FOR SYMMETRICAL REGIONS
    BANDLE, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04): : 627 - &
  • [32] REDUCING THE SYMMETRICAL MATRIX EIGENVALUE PROBLEM TO MATRIX MULTIPLICATIONS
    YAU, ST
    LU, YY
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01): : 121 - 136
  • [33] SOME PERSPECTIVES ON THE EIGENVALUE PROBLEM
    WATKINS, DS
    SIAM REVIEW, 1993, 35 (03) : 430 - 471
  • [34] Collinearity Models in the Eigenvalue Problem
    Bobrowski, Leon
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 402 - 409
  • [35] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [36] REMARKS ON THE POSSIBLE FORMULATION OF QUANTUM ELECTRODYNAMICS AS AN EIGENVALUE PROBLEM
    GILL, TL
    HADRONIC JOURNAL, 1986, 9 (02): : 77 - 85
  • [37] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [38] Some remarks on associated varieties of vertex operator superalgebras
    Li, Hao
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1689 - 1728
  • [39] SOME REMARKS ABOUT COULOMB EFFECTS ON VERTEX PARTS
    KLARSFELD, S
    NUOVO CIMENTO, 1965, 39 (03): : 975 - +
  • [40] Some remarks on associated varieties of vertex operator superalgebras
    Hao Li
    European Journal of Mathematics, 2021, 7 : 1689 - 1728