Vector-valued modular forms and the mock theta conjectures

被引:5
|
作者
Andersen, Nickolas [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
D O I
10.1007/s40993-016-0062-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mock theta conjectures are ten identities involving Ramanujan's fifth-order mock theta functions. The conjectures were proven by Hickerson in 1988 using q-series methods. Using methods from the theory of harmonic Maass forms, specifically work of Zwegers and Bringmann-Ono, Folsom reduced the proof of the mock theta conjectures to a finite computation. Both of these approaches involve proving the identities individually, relying on work of Andrews-Garvan. Here we give a unified proof of the mock theta conjectures by realizing them as an equality between two nonholomorphic vector-valued modular forms which transform according to the Weil representation. We then show that the difference of these vectors lies in a zero-dimensional vector space.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Vector-valued modular forms and Poincare series
    Knopp, M
    Mason, G
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1345 - 1366
  • [22] Vector-valued Hermitian and quaternionic modular forms
    Freitag, Eberhard
    Manni, Riccardo Salvati Salvati
    KYOTO JOURNAL OF MATHEMATICS, 2015, 55 (04) : 819 - 836
  • [23] Remarks on the theta decomposition of vector-valued Jacobi forms
    Williams, Brandon
    JOURNAL OF NUMBER THEORY, 2019, 197 : 250 - 267
  • [24] Vector-valued modular forms and the modular orbifold of elliptic curves
    Candelori, Luca
    Franc, Cameron
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 39 - 63
  • [25] Indecomposable vector-valued modular forms and periods of modular curves
    Candelori, Luca
    Hartland, Tucker
    Marks, Christopher
    Yepez, Diego
    RESEARCH IN NUMBER THEORY, 2018, 4
  • [26] GENERATORS FOR MODULES OF VECTOR-VALUED PICARD MODULAR FORMS
    Clery, Fabien
    van der Geer, Gerard
    NAGOYA MATHEMATICAL JOURNAL, 2013, 212 : 19 - 57
  • [27] On the computation of the determinant of vector-valued Siegel modular forms
    Takemori, Sho
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 : 247 - 256
  • [28] L-series for Vector-valued Modular Forms
    Kim, Byungchan
    Lim, Subong
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 705 - 722
  • [29] Vector-valued modular forms and linear differential operators
    Mason, Geoffrey
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) : 377 - 390
  • [30] Twisted component sums of vector-valued modular forms
    Markus Schwagenscheidt
    Brandon Williams
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2019, 89 : 151 - 168