CONCURRENT SELF-ORGANIZING MAPS FOR PEDESTRIAN DETECTION IN THERMAL IMAGERY

被引:0
|
作者
Ciotec, Adrian-Dumitru [1 ]
Neagoe, Victor-Emil [1 ]
Barar, Andrei-Petru [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Elect Telecommun & Informat Technol, Bucharest, Romania
关键词
pedestrian detection; thermal imagery; night vision; concurrent selforganizing maps (CSOM); histogram of oriented gradients (HOG);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents an original approach for pedestrian detection in thermal imagery using Histogram of Oriented Gradients (HOG) for feature extraction and the neural network classifier called Concurrent Self-Organizing Maps (CSOM), previously introduced by first author. The proposed algorithm has the following main stages: (a) detection of the regions of interest (ROI); (b) feature selection using the Histogram of Oriented Gradients (HOG; (c) classification using a CSOM classifier with several neural modules for each class; (d) decision fusion of the SOM modules into the two final classes: pedestrians and non-pedestrians. For training and testing the proposed algorithm, we have used the OTCBVS - OSU Thermal Pedestrian Database provided by the Ohio State University. After optimizing HOG descriptors parameters we obtains the False Positive Error Rate (FPER) of 1.79%, the False Negative Error Rate (FNER) of 0.49% and the Total Success Rate (TSR) of 98.48 %.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [11] Self-Organizing Maps
    Matera, F
    SUBSTANCE USE & MISUSE, 1998, 33 (02) : 365 - 381
  • [12] Self-organizing pedestrian movement
    Helbing, D
    Molnár, P
    Farkas, IJ
    Bolay, K
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2001, 28 (03): : 361 - 383
  • [13] SOM of SOMs: Self-organizing map which maps a group of self-organizing maps
    Furukawa, T
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 391 - 396
  • [14] Network Anomaly Detection with Bayesian Self-Organizing Maps
    de la Hoz Franco, Emiro
    Ortiz Garcia, Andres
    Ortega Lopera, Julio
    de la Hoz Correa, Eduardo
    Prieto Espinosa, Alberto
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 530 - +
  • [15] OUTLIER DETECTION IN SELF-ORGANIZING MAPS AND THEIR QUALITY ESTIMATION
    Stefanovic, P.
    Kurasova, O.
    NEURAL NETWORK WORLD, 2018, 28 (02) : 105 - 117
  • [16] Intrusion detection using Emergent Self-Organizing Maps
    Mitrokotsa, Aikaterini
    Douligeris, Christos
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 3955 : 559 - 562
  • [17] Intrusion Detection System using Self-Organizing Maps
    Alsulaiman, Mansour M.
    Alyahya, Aasem N.
    Alkharboush, Raed A.
    Alghafis, Nasser S.
    NSS: 2009 3RD INTERNATIONAL CONFERENCE ON NETWORK AND SYSTEM SECURITY, 2009, : 397 - +
  • [18] Improving the Performance of Self-Organizing Maps for Intrusion Detection
    McElwee, Steven
    Cannady, James
    SOUTHEASTCON 2016, 2016,
  • [19] Similar document detection using self-organizing maps
    Lensu, Anssi
    Koikkalainen, Pasi
    International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 1999, : 174 - 177
  • [20] THE SELF-ORGANIZING FEATURE MAPS
    KOHONEN, T
    MAKISARA, K
    PHYSICA SCRIPTA, 1989, 39 (01): : 168 - 172