Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma

被引:112
|
作者
Bergmann, K
Schriever, G
Rosier, O
Muller, M
Neff, W
Lebert, R
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Lasertech, D-52074 Aachen, Germany
[2] Fraunhofer Inst Lasertech, D-52074 Aachen, Germany
关键词
D O I
10.1364/AO.38.005413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 10(17) cm(-3) and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11-18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented. (C) 1999 Optical Society of America.
引用
收藏
页码:5413 / 5417
页数:5
相关论文
共 50 条
  • [41] Effect of Plasma Density on Discharge Produced Plasma Extreme Ultraviolet Source
    Xu Qiang
    Zhao Yong-peng
    Wang Qi
    Yang Yong-tao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (08) : 2560 - 2563
  • [42] Xenon capillary discharge extreme-ultraviolet source emitting over a large angular range
    Klosner, MA
    Silfvast, WT
    APPLIED OPTICS, 2001, 40 (27) : 4849 - 4851
  • [43] Xenon capillary discharge extreme-ultraviolet source emitting over a large angular range
    Klosner, Marc A.
    Silfvast, William T.
    Applied Optics, 2001, 40 (27): : 4849 - 4851
  • [44] ASSESSMENT OF CYTOTOXIC EFFECT MECHANISMS OF GAS-DISCHARGE PLASMA RADIATION
    Ivanova, I. P.
    Trofimova, S. V.
    Vedunova, M. V.
    Zhabereva, A. S.
    Bugrova, M. L.
    Piskaryov, I. M.
    Leitner, Karpel Vel N.
    SOVREMENNYE TEHNOLOGII V MEDICINE, 2014, 6 (01) : 14 - 20
  • [45] GAS-DISCHARGE PLASMA INITIATED IN AIR BY A RADIATION PULSE.
    Butakyi, V.I.
    Tel'nikhin, A.A.
    Soviet physics journal, 1985, 28 (02): : 94 - 97
  • [46] The second Extreme-Ultraviolet Explorer source catalog
    Bowyer, S
    Lampton, M
    Lewis, J
    Wu, X
    Jelinsky, P
    Malina, RF
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1996, 102 (01): : 129 - 160
  • [47] PLASMA LASER AS RADIATION SOURCE FOR EXTREME ULTRAVIOLET SPECTROMETRY
    JAEGLE, P
    DHEZ, P
    CARILLON, A
    JAMELOT, G
    CUKIER, M
    REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, 1971, 8 (01): : 89 - &
  • [48] Extreme-ultraviolet plasma source with full, infrared to vacuum ultraviolet spectral filtering, and with power recycling
    Johnson, Kenneth C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (04):
  • [49] THE EFFECT OF GAS-DISCHARGE PLASMA RADIATION ON ERYTHROCYTE PROTEIN MODIFICATION
    Trofimova, S. V.
    Burkhina, O. E.
    Piskaryov, I. M.
    Ichetkina, A. A.
    Solovyova, T. I.
    Astafieva, K. A.
    Pugina, E. S.
    Ivanova, I. P.
    SOVREMENNYE TEHNOLOGII V MEDICINE, 2014, 6 (03) : 14 - 19
  • [50] Gas-discharge plasma diagnostics by a continuous spectrum of optical radiation
    Pinaev, V. A.
    Isupov, M., V
    XXXVI SIBERIAN THERMOPHYSICAL SEMINAR (STS 36), 2020, 1677