Boundedness of one-sided fractional integrals in the one-sided Calderon-Hardy spaces

被引:0
|
作者
Perini, Alejandra [1 ]
机构
[1] Univ Nacl Comahue, Dept Matemat, Fac Econ & Adm, RA-8300 Neuquen, Argentina
关键词
fractional integral; maximal; one-sided Calderon-Hardy; one-sided weights spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the mapping properties of the one-sided fractional integrals in the Calderon-Hardy spaces H-q,alpha(p,+ )(omega) for 0 < p <= 1, 0 < alpha < infinity and 1 < q < infinity. Specifically, we show that, for suitable values of p,q,gamma,alpha and s, if omega is an element of A(s)(+) (Sawyer's classes of weights) then the one-sided fractional integral I-gamma(+) can be extended to a bounded operator from H-q,alpha(p,+) (omega to H-q,alpha+gamma(p,+ )(omega). The result is a consequence of the pointwise inequality N-q,alpha+gamma(+) (I-gamma(+) F;x) <= C alpha,gamma Nq,alpha+ (F;X), where N-q,alpha(+)(F;x) denotes the Calderon maximal function.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条