SPHERICAL COMPLETENESS OF THE NON-ARCHIMEDEAN RING OF COLOMBEAU GENERALIZED NUMBERS

被引:0
|
作者
Mayerhofer, Eberhard [1 ]
机构
[1] Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
关键词
generalized functions; Colombeau theory; ultrametric spaces; spherically complete; topological rings; Hahn-Banach theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show spherical completeness of the ring of Colombeau generalized real numbers endowed with the sharp norm. As an application, we establish a Hahn-Banach extension theorem for ultra-pseudo-normed modules of generalized functions in the sense of Colombeau.
引用
收藏
页码:769 / 783
页数:15
相关论文
共 50 条
  • [41] NON-ARCHIMEDEAN GNS CONSTRUCTION AND NON-ARCHIMEDEAN KREIN-MILMAN THEOREM
    Mihara, Tomoki
    OPERATORS AND MATRICES, 2017, 11 (04): : 969 - 998
  • [42] Stability and Superstability of Ring Homomorphisms on Non-Archimedean Banach Algebras
    Gordji, M. Eshaghi
    Alizadeh, Z.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [43] On complemented subspaces of non-Archimedean generalized power series spaces
    Sliwa, Wieslaw
    Ziemkowska, Agnieszka
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2016, 665 : 327 - 335
  • [44] The Generalized Oppenheim Expansions for the Direct Product of Non-Archimedean Fields
    Sukharev, I. Yu.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2011, 66 (03) : 123 - 124
  • [45] On Linear Isometries on Non-Archimedean Generalized Power Series Spaces
    Ziemkowska, Agnieszka
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [46] Non-archimedean pinchings
    Michael Temkin
    Mathematische Zeitschrift, 2022, 301 : 2099 - 2109
  • [47] APPROXIMATE HIGHER RING DERIVATIONS IN NON-ARCHIMEDEAN BANACH ALGEBRAS
    Chang, Ick-Soon
    Alizadeh, Badrkhan
    Gordji, M. Eshaghi
    Kim, Hark-Mahn
    MATHEMATICA SLOVACA, 2015, 65 (01) : 157 - 168
  • [48] Nearly Ring Homomorphisms and Nearly Ring Derivations on Non-Archimedean Banach Algebras
    Gordji, Madjid Eshaghi
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [49] Differentiability of non-archimedean volumes and non-archimedean Monge-Ampere equations
    Burgos Gil, Jose Ignacio
    Gubler, Walter
    Jell, Philipp
    Kuennemann, Klaus
    Martin, Florent
    Lazarsfeld, Robert
    ALGEBRAIC GEOMETRY, 2020, 7 (02): : 113 - 152
  • [50] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    V. Bernik
    N. Budarina
    H. O’Donnell
    Acta Mathematica Hungarica, 2018, 154 : 265 - 278