WILL THE PLS CRITERION FOR ORDER ESTIMATION WORK WITH AML AND A-POSTERIORI PREDICTION ERROR

被引:0
|
作者
HEMERLY, EM
FRAGOSO, MD
机构
[1] CTR TECH AEROSP,INST TECHNOL AERONAUT,IEEE,BR-12225 SAO JOSE CAMPOS,SP,BRAZIL
[2] CONSELHO NACL PESQUISAS,DEPT PESQUISA & DESENVOLVIMENTO,NACL COMP CIENT LAB,BR-22290 RIO DE JANEIRO,RJ,BRAZIL
关键词
ARMA models; model order estimation; predictive least squares;
D O I
10.1016/0167-6911(90)90085-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The general formula of the PLS (Predictive Least Squares) criterion for order estimation is worked out under the assumption that the parameter estimates are calculated via the AML (Approximate Maximum Likelihood). A particular case is then carefully analysed and it is shown that depending on the system generating the data the PLS critetion using the a posteriori prediction error can, surprisingly, almost surely overestimate the true order. © 1990.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [31] A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR AND TETRAHEDRAL QUADRATIC ELEMENTS USING INTERIOR RESIDUALS
    BAEHMANN, PL
    SHEPHARD, MS
    FLAHERTY, JE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (03) : 979 - 996
  • [32] Efficient and reliable a-posteriori error estimates for for boundary integral operators of positive and negative order
    Faermann, B
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 303 - 310
  • [33] Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system
    Immanuel Martini
    Gianluigi Rozza
    Bernard Haasdonk
    Advances in Computational Mathematics, 2015, 41 : 1131 - 1157
  • [34] Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system
    Martini, Immanuel
    Rozza, Gianluigi
    Haasdonk, Bernard
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) : 1131 - 1157
  • [35] Energy based a-posteriori error estimation and adaptive finite element analysis of laminated composite plates
    Rajagopal, A.
    Gangadharan, R.
    Sivakumar, S. M.
    Computational Methods, Pts 1 and 2, 2006, : 393 - 398
  • [36] COMPARISON OF MAXIMUM A-POSTERIORI ESTIMATION AND QUASI BEST LINEAR UNBIASED PREDICTION WITH THRESHOLD CHARACTERS
    HOESCHELE, I
    JOURNAL OF ANIMAL BREEDING AND GENETICS-ZEITSCHRIFT FUR TIERZUCHTUNG UND ZUCHTUNGSBIOLOGIE, 1988, 105 (05): : 337 - 361
  • [37] A posteriori error estimation for model order reduction of parametric systems
    Feng, Lihong
    Chellappa, Sridhar
    Benner, Peter
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [38] A posteriori error estimation for model order reduction of parametric systems
    Lihong Feng
    Sridhar Chellappa
    Peter Benner
    Advanced Modeling and Simulation in Engineering Sciences, 11
  • [39] A-POSTERIORI FINITE-ELEMENT METHOD ERROR-ESTIMATES FOR 4TH-ORDER PROBLEMS
    POMERANZ, SB
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (03): : 213 - 226
  • [40] A-POSTERIORI ERROR ESTIMATION OF H-P FINITE-ELEMENT APPROXIMATIONS OF FRICTIONAL CONTACT PROBLEMS
    LEE, CY
    ODEN, JT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 113 (1-2) : 11 - 45