SOLITARY SOLUTIONS IN A MODIFIED HUBBARD CHAIN

被引:7
|
作者
LINDNER, U [1 ]
FEDYANIN, VK [1 ]
机构
[1] DUBNA JOINT NUCL RES INST,THEORET PHYS LAB,DUBNA,USSR
来源
关键词
D O I
10.1002/pssb.2220950155
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:K83 / K87
页数:5
相关论文
共 50 条
  • [21] Periodic wave solutions and solitary wave solutions of generalized modified Boussinesq equation and evolution relationship between both solutions
    Li, Shaowei
    Zhang, Weiguo
    Bu, Xiaoshuang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 96 - 126
  • [22] Exact solitary solutions of an inhomogeneous modified nonlinear Schrodinger equation with competing nonlinearities
    Kavitha, L.
    Akila, N.
    Prabhu, A.
    Kuzmanovska-Barandovska, O.
    Gopi, D.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 1095 - 1110
  • [23] Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation
    Munro, S
    Parkes, EJ
    JOURNAL OF PLASMA PHYSICS, 2000, 64 (04) : 411 - 426
  • [24] Solitary wave type solutions of nonlinear improved mKdV equation by modified techniques
    Alhefthi, R. K.
    Khan, M. Ishfaq
    Sabi'u, J.
    Marwat, D. Nawaz Khan
    Inc, M.
    REVISTA MEXICANA DE FISICA, 2024, 70 (05)
  • [25] Solitary wave solutions with non-monotone shapes for the modified Kawahara equation
    Marinov, Tchavdar T.
    Marinova, Rossitza S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 561 - 570
  • [26] Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation
    He, Bin
    Meng, Qing
    Li, Shaolin
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 1976 - 1982
  • [27] The exact and numerical solitary-wave solutions for generalized modified Boussinesq equation
    Kaya, D
    PHYSICS LETTERS A, 2006, 348 (3-6) : 244 - 250
  • [28] Existence of the solitary wave solutions supported by the modified FitzHugh-Nagumo system
    Gawlik, Aleksandra
    Vladimirov, Vsevolod
    Skurativskyi, Sergii
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (03): : 482 - 501
  • [29] Exact solitary-wave solutions with compact support for the modified KdV equation
    Zhu, Yonggui
    Chang, Qianshun
    Wu, Shengchang
    Chaos, Solitons and Fractals, 2005, 24 (01): : 365 - 369
  • [30] Exact solitary-wave solutions with compact support for the modified KdV equation
    Zhu, YG
    Chang, QS
    Wu, SC
    CHAOS SOLITONS & FRACTALS, 2005, 24 (01) : 365 - 369