SOLITARY SOLUTIONS IN A MODIFIED HUBBARD CHAIN

被引:7
|
作者
LINDNER, U [1 ]
FEDYANIN, VK [1 ]
机构
[1] DUBNA JOINT NUCL RES INST,THEORET PHYS LAB,DUBNA,USSR
来源
关键词
D O I
10.1002/pssb.2220950155
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:K83 / K87
页数:5
相关论文
共 50 条
  • [1] ON SOLITARY SOLUTIONS IN A MODIFIED HUBBARD CHAIN
    LINDNER, U
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1981, 106 (01): : K77 - K81
  • [2] 2-SOLITON SOLUTION IN A MODIFIED HUBBARD CHAIN
    LINDNER, U
    SCHERF, S
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1984, 125 (01): : 177 - 185
  • [3] Solitary waves in a granular chain of elastic spheres: Multiple solitary solutions and their stabilities
    Liu, Zhi-Guo
    Wang, Yue-Sheng
    Huang, Guoliang
    PHYSICAL REVIEW E, 2019, 99 (06)
  • [4] New solitary solutions in FPU-β atom chain
    Li, Jin-Xing
    Zhang, Shaowu
    Liu, Fei
    Gao, Yu
    MODERN PHYSICS LETTERS B, 2016, 30 (12):
  • [5] New solitary wave solutions to the modified Kawahara equation
    Wazwaz, Abdul-Majid
    PHYSICS LETTERS A, 2007, 360 (4-5) : 588 - 592
  • [6] Solitary Wave Solutions to a Class of Modified Green–Naghdi Systems
    Vincent Duchêne
    Dag Nilsson
    Erik Wahlén
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 1059 - 1091
  • [7] Solitary wave solutions for the modified Kadomtsev-Petviashvili equation
    Zhao, Xiaoshan
    Xu, Wei
    Jia, Huabing
    Zhou, Hongxian
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 465 - 475
  • [8] Solitary wave solutions of the modified equal width wave equation
    Esen, A.
    Kutluay, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) : 1538 - 1546
  • [9] Properties of the Hubbard chain
    Noack, RM
    Daul, S
    Kneer, S
    DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 197 - 209
  • [10] Solitary Wave Solutions to a Class of Modified Green-Naghdi Systems
    Duchene, Vincent
    Nilsson, Dag
    Wahlen, Erik
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) : 1059 - 1091