GENERALIZED LINEAR MODELS;
LOGISTIC REGRESSION;
MEASUREMENT ERROR;
PROBIT REGRESSION;
D O I:
10.2307/2291065
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We describe two approaches to instrumental variable estimation in binary regression measurement error models. The methods entail constructing approximate mean models for the binary response as a function of the measured predictor, the instrument, and any covariates in the model. Estimates are obtained by exploiting relationships between regression parameters, just as in linear instrumental variable estimation. In the course of deriving the approximate mean models, we obtain an alternative characterization of instrumental variable estimation in linear measurement error models.
机构:
Univ Southern Calif, Dornsife INET, KAP 300, Los Angeles, CA 90089 USA
Yonsei Univ, Seoul 03722, South KoreaUniv Cincinnati, Dept Econ, Cincinnati, OH 45220 USA
Moon, Hyungsik Roger
Zhou, Qiankun
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Econ, Baton Rouge, LA 70803 USAUniv Cincinnati, Dept Econ, Cincinnati, OH 45220 USA