Mean field theory of the edge of chaos

被引:0
|
作者
Gutowitz, H [1 ]
Langton, C [1 ]
机构
[1] SANTA FE INST, SANTA FE, NM 87501 USA
来源
ADVANCES IN ARTIFICIAL LIFE | 1995年 / 929卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Is there an Edge of Chaos, and if so, can evolution take us to it? Many issues have to be settled before any definitive answer can be given. For quantitative work, we need a good measure of complexity. We suggest that convergence time is an appropriate and useful measure. in the case of cellular automata, one of the advantages of the convergence-time measure is that it can be analytically approximated using a generalized mean field theory. In this paper we demonstrate that the mean field theory for cellular automata can 1) reduce the variablity of behavior inherent in the X-parameter approach, 2) approximate convergence time, and 3) drive an evolutionary process toward increasing complexity.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 50 条
  • [41] Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo
    Brito, Francisco M. O.
    Li, Linhu
    Lopes, Joao M. V. P.
    V. Castro, Eduardo
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [42] Mean field theory for algebraic models
    Rosensteel, G
    Dankova, T
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2000, 12 (2-4): : 127 - 130
  • [43] Embedded Mean-Field Theory
    Fornace, Mark E.
    Lee, Joonho
    Miyamoto, Kaito
    Manby, Frederick R.
    Miller, Thomas F., III
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (02) : 568 - 580
  • [44] The Master equation in mean field theory
    Bensoussan, Alain
    Frehse, Jens
    Yam, Sheung Chi Phillip
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06): : 1441 - 1474
  • [45] Dissipation and decoherence in mean field theory
    Habib, S
    Kluger, Y
    Mottola, E
    Paz, JP
    PHYSICAL REVIEW LETTERS, 1996, 76 (25) : 4660 - 4663
  • [46] Fission in the relativistic mean field theory
    Rutz, K
    Bender, M
    Maruhn, JA
    Reinhard, PG
    Greiner, W
    REVISTA MEXICANA DE FISICA, 1995, 41 : 132 - 144
  • [47] Mean field theory of phase transitions
    Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, United States
    J Chem Educ, 6 (848-853):
  • [48] Harmonic analysis and mean field theory
    Karateev, Denis
    Kravchuk, Petr
    Simmons-Duffin, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [49] Mean field theory of phase transitions
    Honig, JM
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (06) : 848 - 853