Mean field theory of the edge of chaos

被引:0
|
作者
Gutowitz, H [1 ]
Langton, C [1 ]
机构
[1] SANTA FE INST, SANTA FE, NM 87501 USA
来源
ADVANCES IN ARTIFICIAL LIFE | 1995年 / 929卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Is there an Edge of Chaos, and if so, can evolution take us to it? Many issues have to be settled before any definitive answer can be given. For quantitative work, we need a good measure of complexity. We suggest that convergence time is an appropriate and useful measure. in the case of cellular automata, one of the advantages of the convergence-time measure is that it can be analytically approximated using a generalized mean field theory. In this paper we demonstrate that the mean field theory for cellular automata can 1) reduce the variablity of behavior inherent in the X-parameter approach, 2) approximate convergence time, and 3) drive an evolutionary process toward increasing complexity.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 50 条
  • [1] Mean Field Residual Networks: On the Edge of Chaos
    Yang, Greg
    Schoenholz, Samuel S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] The edge of chaos: Quantum field theory and deep neural networks
    Grosvenor, Kevin T.
    Jefferson, Ro
    SCIPOST PHYSICS, 2022, 12 (03):
  • [3] On the Size of Chaos in the Mean Field Dynamics
    Paul, Thierry
    Pulvirenti, Mario
    Simonella, Sergio
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (01) : 285 - 317
  • [4] MEAN-FIELD OUT OF CHAOS
    ZELEVINSKY, VG
    NUCLEAR PHYSICS A, 1993, 555 (01) : 109 - 127
  • [5] On the Size of Chaos in the Mean Field Dynamics
    Thierry Paul
    Mario Pulvirenti
    Sergio Simonella
    Archive for Rational Mechanics and Analysis, 2019, 231 : 285 - 317
  • [6] Free-energy landscapes, dynamics, and the edge of chaos in mean-field models of spin glasses
    Aspelmeier, T.
    Blythe, R. A.
    Bray, A. J.
    Moore, M. A.
    PHYSICAL REVIEW B, 2006, 74 (18)
  • [7] Chaos in the Hamiltonian mean-field model
    Ginelli, Francesco
    Takeuchi, Kazumasa A.
    Chate, Hugues
    Politi, Antonio
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [8] Increasing propagation of chaos for mean field models
    Ben Arous, G
    Zeitouni, O
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (01): : 85 - 102
  • [9] Edge of Chaos Theory Resolves Smale Paradox
    Ascoli, Alon
    Demirkol, Ahmet Samil
    Tetzlaff, Ronald
    Chua, Leon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (03) : 1252 - 1265
  • [10] Chaos and statistical mechanics in the Hamiltonian mean field model
    Latora, Vito
    Rapisarda, Andrea
    Ruffo, Stefano
    Physica D: Nonlinear Phenomena, 1999, 131 (01): : 38 - 54