HAMILTON PRINCIPLE FOR NONHOLONOMIC SYSTEMS

被引:0
|
作者
RUMIANTSEV, VV
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [31] Hamilton's Principle as Variational Inequality for Mechanical Systems with Impact
    Leine, R. I.
    Aeberhard, U.
    Glocker, C.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (06) : 633 - 664
  • [33] Hamilton’s Principle as Variational Inequality for Mechanical Systems with Impact
    R. I. Leine
    U. Aeberhard
    C. Glocker
    Journal of Nonlinear Science, 2009, 19
  • [34] NONHOLONOMIC HAMILTON-JACOBI EQUATION AND INTEGRABILITY
    Ohsawa, Tomoki
    Bloch, Anthony M.
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (04): : 461 - 481
  • [35] BIFURCATIONS AND HAMILTON PRINCIPLE
    WEINSTEIN, A
    MATHEMATISCHE ZEITSCHRIFT, 1978, 159 (03) : 235 - 248
  • [36] Herglotz-type principle and first integrals for nonholonomic systems in phase space
    Xin-Chang Dong
    Yi Zhang
    Acta Mechanica, 2023, 234 : 6083 - 6095
  • [37] New general principle of mechanics and its application to general nonideal nonholonomic systems
    Udwadia, FE
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2005, 131 (04): : 444 - 450
  • [38] EQUATIONS OF MOTION FOR NONHOLONOMIC, CONSTRAINED DYNAMICAL-SYSTEMS VIA GAUSS PRINCIPLE
    KALABA, RE
    UDWADIA, FE
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (03): : 662 - 668
  • [39] Herglotz-type principle and first integrals for nonholonomic systems in phase space
    Dong, Xin-Chang
    Zhang, Yi
    ACTA MECHANICA, 2023, 234 (12) : 6083 - 6095
  • [40] Practical Regulation of Nonholonomic Systems Using Virtual Trajectories and LaSalle Invariance Principle
    Zhang, Dianfeng
    Lee, Ti-Chung
    Sun, Xi-Ming
    Wu, Yuhu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (05): : 1833 - 1839