Hardy type operators on grand Lebesgue spaces for non-increasing functions

被引:9
|
作者
Jain, Pankaj [1 ]
Singh, Monika [2 ]
Singh, Arun Pal [3 ]
机构
[1] South Asian Univ, Dept Math, Fac Math & Comp Sci, New Delhi 110021, India
[2] Univ Delhi, Lady Shri Ram Coll Women, Dept Math, New Delhi 110024, India
[3] Univ Delhi, Dyal Singh Coll, Dept Math, Lodhi Rd, New Delhi 110003, India
关键词
Non-increasing functions; B-phi; B- (p) class of weights; B-phi*; grand Lebesgue space;
D O I
10.1016/j.trmi.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the weights w for which the operator T(psi)f (x) = integral(x)(0)psi(x, y)f(y)dy is bounded between weighted grand Lebesgue spaces L-w(p)) for non-increasing functions. The conjugate of T-psi, for a special psi, given by S(phi)(*)f(x) := integral(infinity)(x) f(y)phi(y)/phi(y)dy is considered. An extrapolation type result giving L-p) -boundedness of S-phi(*) for non-increasing functions has been proved. Also its L-p -boundedness has been characterized. Finally, a variant of S-phi(*) has been considered and discussed. (C) 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 50 条
  • [41] Maximal operators on variable Lebesgue and Hardy spaces and applications in Fourier analysis
    Weisz, Ferenc
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (03): : 118 - 134
  • [42] TOEPLITZ-TYPE OPERATORS ON LEBESGUE SPACES
    陆善镇
    默会霞
    Acta Mathematica Scientia, 2009, 29 (01) : 140 - 150
  • [43] A non-increasing Lindley-type equation
    Maria Vlasiou
    Queueing Systems, 2007, 56 : 41 - 52
  • [44] TOEPLITZ-TYPE OPERATORS ON LEBESGUE SPACES
    Shanzhen, Lu
    Huixia, Mo
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) : 140 - 150
  • [45] A non-increasing Lindley-type equation
    Vlasiou, Maria
    QUEUEING SYSTEMS, 2007, 56 (01) : 41 - 52
  • [46] Maximal and Calderón–Zygmund operators in grand variable Lebesgue spaces
    Shuai Yang
    Jiawei Sun
    Baode Li
    Banach Journal of Mathematical Analysis, 2023, 17
  • [47] Maximal and Calderon-Zygmund operators in grand variable Lebesgue spaces
    Yang, Shuai
    Sun, Jiawei
    Li, Baode
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [48] One-Sided Operators in Grand Variable Exponent Lebesgue Spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 277 - 297
  • [49] Boundedness of Hardy operators on grand variable weighted Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Zhang, Qian-Qian
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (10): : 24515 - 24527
  • [50] EMBEDDING OF GRAND CENTRAL MORREY-TYPE SPACES INTO LOCAL GRAND WEIGHTED LEBESGUE SPACES
    Umarkhadzhiev S.M.
    Journal of Mathematical Sciences, 2022, 266 (3) : 483 - 490