LINEAR DISJOINTNESS OF POLYNOMIALS

被引:0
|
作者
ABHYANKAR, SS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that any two bivariate polynomials can be made linearly disjoint by applying a linear transformation to one of the variables in one of the polynomials. From this it is deduced that the algebraic fundamental group of an affine line is closed relative to direct products.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [31] MINIMAL DISJOINTNESS
    AOUN, J
    LI, YHA
    LINGUISTICS, 1990, 28 (02) : 189 - 203
  • [32] LINEAR COMBINATIONS OF BERNSTEIN POLYNOMIALS
    BUTZER, PL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (04): : 559 - 567
  • [33] ON LINEAR COMBINATIONS OF CHEBYSHEV POLYNOMIALS
    Stankov, Dragan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 97 (111): : 57 - 67
  • [34] LINEAR FUNCTIONALS ON HOMOGENEOUS POLYNOMIALS
    DUNKL, CF
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (03): : 465 - &
  • [35] Polynomials generated by linear operators
    Galindo, P
    Lourenço, ML
    Moraes, LA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) : 2917 - 2927
  • [36] Linear recurrences and Chebyshev polynomials
    Kitaev, S
    Mansour, T
    FIBONACCI QUARTERLY, 2005, 43 (03): : 256 - 261
  • [37] Boolean polynomials and linear transformations
    V. K. Leont’ev
    Doklady Mathematics, 2009, 79 : 216 - 218
  • [38] LINEAR COMBINATIONS OF BERNSTEIN POLYNOMIALS
    BUTZER, PL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (06) : 633 - 633
  • [39] BERNOULLI DISJOINTNESS
    Glasner, Eli
    Tsankov, Todor
    Weiss, Benjamin
    Zucker, Andy
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (04) : 615 - 651
  • [40] A note on linear permutation polynomials
    Yuan, Pingzhi
    Zeng, Xiangneng
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) : 488 - 491