Modified (p,q)-Bernstein-Schurer operators and their approximation properties

被引:6
|
作者
Mursaleen, M. [1 ]
Al-Abied, A. [1 ]
Nasiruzzaman, Md. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
q-integers; (p; q)-integers; Bernstein operator; q)-Bernstein operator; q)-Bernstein-Schurer operator; modulus of continuity; Korovkin's approximation theorem;
D O I
10.1080/23311835.2016.1236534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836
  • [2] Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers
    Mursaleen, Mohammad
    Nasiruzzaman, Md
    Nurgali, Ashirbayev
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [3] Approximation by α$$ \alpha $$-Bernstein-Schurer operators and shape preserving properties via q$$ q $$-analogue
    Nasiruzzaman, Md
    Aljohani, A. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2354 - 2372
  • [4] On (p, q)-analogue of modified Bernstein-Schurer operators for functions of one and two variables
    Cai, Qing-Bo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 1 - 21
  • [5] ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1145 - 1156
  • [6] Approximation by α-Bernstein-Schurer operator
    Cetin, Nursel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 732 - 743
  • [7] Bivariate Chlodowsky-Stancu Variant of (p,q)-Bernstein-Schurer Operators
    Vedi-Dilek, Tuba
    Gemikonakli, Eser
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [8] Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators
    Mohiuddine, S. A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [9] Approximation of functions by a new class of generalized Bernstein-Schurer operators
    Ozger, Faruk
    Srivastava, H. M.
    Mohiuddine, S. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [10] CONSTRUCTION OF A NEW FAMILY OF MODIFIED BERNSTEIN-SCHURER OPERATORS OF DIFFERENT ORDER FOR BETTER APPROXIMATION
    Mohiuddine, S. A.
    Ozger, Zeynep Odemis
    Ozger, Faruk
    Alotaibi, Abdullah
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (09) : 2059 - 2082