A GENERALIZATION OF BERNOULLI-EULER PARTITION FORMULA

被引:0
|
作者
GOOD, IJ
机构
来源
SCRIPTA MATHEMATICA | 1970年 / 28卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:319 / &
相关论文
共 50 条
  • [41] Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force
    Ammari, K
    Tucsnak, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) : 1160 - 1181
  • [42] PARAMETRIC EXCITATION OF A NON-HOMOGENEOUS BERNOULLI-EULER BEAM
    FRANCIS, PH
    JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1968, 10 (03): : 205 - &
  • [43] Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force
    LIANG Xu
    SHEN ShengPing
    Science China(Physics,Mechanics & Astronomy), 2013, (10) : 1930 - 1937
  • [44] Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams
    Barretta, Raffaele
    Feo, Luciano
    Luciano, Raimondo
    de Sciarra, Francesco Marotti
    COMPOSITE STRUCTURES, 2015, 129 : 80 - 89
  • [45] Modelling a rotating shaft as an elastically restrained Bernoulli-Euler beam
    T. A. N. Silva
    N. M. M. Maia
    Experimental Techniques, 2013, 37 : 6 - 13
  • [46] Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force
    Xu Liang
    ShengPing Shen
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 1930 - 1937
  • [47] Bernoulli-Euler问题的一般形式
    孙四周
    张晗方
    中学数学, 1996, (08) : 22 - 23
  • [48] Reflections on Applying Mathematical Modeling in the Solution of "Bernoulli-Euler Problem"
    Liu, Zhiyang
    Li, Shijian
    PROCEEDINGS OF 2014 3RD INTERNATIONAL CONFERENCE ON PHYSICAL EDUCATION AND SOCIETY MANAGEMENT (ICPESM 2014), VOL 24, 2014, 24 : 233 - 237
  • [49] NATURAL-MODES OF BERNOULLI-EULER BEAMS WITH SYMMETRIC CRACKS
    SHEN, MHH
    PIERRE, C
    JOURNAL OF SOUND AND VIBRATION, 1990, 138 (01) : 115 - 134
  • [50] ONE-DIMENSIONAL THEORY OF CRACKED BERNOULLI-EULER BEAMS
    CHRISTIDES, S
    BARR, ADS
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1984, 26 (11-1) : 639 - 648