NOISE-INDUCED SENSITIVITY TO THE INITIAL CONDITIONS IN STOCHASTIC DYNAMICAL-SYSTEMS

被引:8
|
作者
VANDENBROECK, C [1 ]
NICOLIS, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES,B-1050 BRUSSELS,BELGIUM
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevE.48.4845
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that the occurrence of a positive time-averaged Lyapunov exponent in a nonlinear system subject to noise, be it additive or multiplicative, does not necessarily imply deterministic chaos.
引用
收藏
页码:4845 / 4846
页数:2
相关论文
共 50 条
  • [41] Pinning noise-induced stochastic resonance
    Tang, Yang
    Gao, Huijun
    Zou, Wei
    Kurths, Juergen
    PHYSICAL REVIEW E, 2013, 87 (06)
  • [42] Stochastic sensitivity of Turing patterns: methods and applications to the analysis of noise-induced transitions
    Bashkirtseva, Irina
    Kolinichenko, Alexander
    Ryashko, Lev
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [43] APPROPRIATE INITIAL CONDITIONS FOR ASYMPTOTIC DESCRIPTIONS OF THE LONG-TERM EVOLUTION OF DYNAMICAL-SYSTEMS
    ROBERTS, AJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1989, 31 : 48 - 75
  • [44] ASYMPTOTIC STABILITY WITH RATE CONDITIONS FOR DYNAMICAL-SYSTEMS
    FENICHEL, N
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) : 346 - 349
  • [45] A REMARK ON SYMMETRY OF STOCHASTIC DYNAMICAL-SYSTEMS AND THEIR CONSERVED QUANTITIES
    ALBEVERIO, S
    FEI, SM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22): : 6363 - 6371
  • [46] CONDITIONS FOR LOCAL (REVERSING) SYMMETRIES IN DYNAMICAL-SYSTEMS
    LAMB, JSW
    ROBERTS, JAG
    CAPEL, HW
    PHYSICA A, 1993, 197 (03): : 379 - 422
  • [47] FLOWS OF STOCHASTIC DYNAMICAL-SYSTEMS - THE FUNCTIONAL ANALYTIC APPROACH
    CARVERHILL, AP
    ELWORTHY, KD
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02): : 245 - 267
  • [48] Noise-induced Periodicity: Some Stochastic Models for Complex Biological Systems
    Pra, Paolo Dai
    Giacomin, Giambattista
    Regoli, Daniele
    MATHEMATICAL MODELS AND METHODS FOR PLANET EARTH, 2014, 6 : 25 - 35
  • [49] QUANTIZATION OF DYNAMICAL-SYSTEMS AND STOCHASTIC-CONTROL THEORY
    GUERRA, F
    MORATO, LM
    PHYSICAL REVIEW D, 1983, 27 (08): : 1774 - 1786
  • [50] THEORY OF STOCHASTIC-PROCESSES IN QUANTUM DYNAMICAL-SYSTEMS
    BARABANENKOV, YN
    OZRIN, VD
    SHELEST, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 42 (02) : 152 - 159