A QUADRATICALLY CONVERGENT LOCAL ALGORITHM ON MINIMIZING THE LARGEST EIGENVALUE OF A SYMMETRICAL MATRIX

被引:7
|
作者
FAN, MKH
机构
[1] School of Electrical Engineering Georgia Institute of Technology Atlanta
关键词
D O I
10.1016/0024-3795(93)90470-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimization involving eigenvalues arise in many engineering problems. We propose a new algorithm on minimizing the largest eigenvalue over an affine family of symmetric matrices. Under certain assumptions it is shown that, if started close enough to the minimizer x*, the proposed algorithm converges to x* quadratically. The proposed algorithm can be readily extended to minimizing the largest eigenvalue over an affine family of Hermitian matrices. Also, it has been extended to minimizing sums of the largest eigenvalues of a symmetric or Hermitian matrix.
引用
收藏
页码:231 / 253
页数:23
相关论文
共 50 条
  • [21] On the largest eigenvalue of the distance matrix of a tree
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 58 (03) : 657 - 662
  • [22] On the largest eigenvalue of extended eccentric matrix
    Ghorbani, Modjtaba
    Alidehi-Ravandi, Razie
    Amraei, Najaf
    Raza, Zahid
    CHAOS SOLITONS & FRACTALS, 2024, 185
  • [23] A quadratically convergent Bernoulli-like algorithm for solving matrix polynomial equations in Markov chains
    He, C
    Meini, B
    Rhee, NH
    Sohraby, K
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 151 - 167
  • [24] A QUADRATICALLY CONVERGENT ALGORITHM FOR SOLVING INFINITE DIMENSIONAL INEQUALITIES
    MAYNE, DQ
    POLAK, E
    APPLIED MATHEMATICS AND OPTIMIZATION, 1982, 9 (01): : 25 - 40
  • [25] A quadratically convergent algorithm for the generalized nonlinear complementarity problem
    Chen, Kaixun
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1483 - 1489
  • [26] ON MINIMIZING THE MAXIMUM EIGENVALUE OF A SYMMETRIC MATRIX
    OVERTON, ML
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (02) : 256 - 268
  • [27] ON THE SUM OF THE LARGEST EIGENVALUES OF A SYMMETRICAL MATRIX
    OVERTON, ML
    WOMERSLEY, RS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 41 - 45
  • [28] A QUADRATICALLY CONVERGENT PROXIMAL ALGORITHM FOR NONNEGATIVE TENSOR DECOMPOSITION
    Vervliet, Nico
    Themelis, Andreas
    Patrinos, Panagiotis
    De Lathauwer, Lieven
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1020 - 1024
  • [29] REDUCING THE SYMMETRICAL MATRIX EIGENVALUE PROBLEM TO MATRIX MULTIPLICATIONS
    YAU, ST
    LU, YY
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01): : 121 - 136
  • [30] A quadratically convergent Newton method for computing the nearest correlation matrix
    Qi, Houduo
    Sun, Defeng
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (02) : 360 - 385