FLUCTUATIONS AND SUSCEPTIBILITY DISPERSION IN FERROELECTRICS ON THE BASIS OF THE FOKKER-PLANCK EQUATION

被引:6
|
作者
KAUPUZS, J
机构
[1] Laboratory of Semiconductor Physics, Riga Technical University
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1994年 / 183卷 / 02期
关键词
D O I
10.1002/pssb.2221830225
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Fokker-Planck equation is used to calculate the dielectric susceptibility dispersion in ferroelectrics within the Landau-Ginzburg model. Equations for both the time-space correlation function and the susceptibility are obtained on the basis of subsequent consideration of fluctuations. Two cases are considered: 1. a small-size single domain ferroelectric and 2. an-infinite-size ferroelectric. Effects related to a switching of the system between two stable states due to fluctuations are investigated. The obtained results explain in general (without specific effects) both frequency and temperature dependence of the susceptibility (or permittivity) and the dielectric loss angle observed experimentally in ceramics and polycrystals (case 1) as well as in single ferroelectric crystals (case 2).
引用
收藏
页码:581 / 594
页数:14
相关论文
共 50 条
  • [41] EIGENVALUES OF THE LORENTZ FOKKER-PLANCK EQUATION
    SHIZGAL, B
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (04): : 1948 - 1951
  • [42] DERIVATION AND APPLICATION OF FOKKER-PLANCK EQUATION
    CAUGHEY, TK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1962, 34 (12): : 2000 - &
  • [43] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [44] Copulas from the Fokker-Planck equation
    Choe, Hi Jun
    Ahn, Cheonghee
    Kim, Beom Jin
    Ma, Yong-Ki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 519 - 530
  • [45] Fokker-Planck equation on metric graphs
    Matrasulov, J.
    Sabirov, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 608
  • [46] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)
  • [47] Local fractional Fokker-Planck equation
    Phys Rev Lett, 2 (214):
  • [48] FUNCTIONAL INTEGRALS AND THE FOKKER-PLANCK EQUATION
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 53 (01): : 135 - 159
  • [49] A TORSIONAL FOKKER-PLANCK EQUATION FOR BUTANE
    EVANS, GT
    KNAUSS, DC
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (09): : 4647 - 4650
  • [50] Free energy and the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 265 - 271