Exact Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation by the First Integral Method

被引:0
|
作者
Taghizadeh, N. [1 ]
Mirzazadeh, M. [1 ]
机构
[1] Univ Guilan, Fac Math, Dept Math, POB 1914, Rasht, Iran
关键词
First integral method; Konopelchenko-Dubrovsky equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the first integral method is used to construct exact travelling wave solutions of Konopelchenko-Dubrovsky equation. The first integral method is algebraic direct method for obtaining exact solutions of nonlinear partial differential equations. This method can be applied to non-integrable equations as well as to integrable ones. This method is based on the theory of commutative algebra.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 50 条
  • [31] Complexiton and resonant multiple wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wu, Pinxia
    Zhang, Yufeng
    Muhammad, Iqbal
    Yin, Qiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 845 - 853
  • [32] Multiple lump solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Ma, Hongcai
    Bai, Yunxiang
    Deng, Aiping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7135 - 7142
  • [33] Novel resonant soliton interactions for the Konopelchenko-Dubrovsky equation
    Yuan, Yu-Qiang
    Luo, Xiang
    Sun, Yan
    Liu, Lei
    PHYSICS LETTERS A, 2025, 537
  • [34] The periodic wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Sheng, Zhang
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1213 - 1220
  • [35] On group-invariant solutions of Konopelchenko-Dubrovsky equation by using Lie symmetry approach
    Kumar, Mukesh
    Tiwari, Atul Kumar
    NONLINEAR DYNAMICS, 2018, 94 (01) : 475 - 487
  • [36] Solitons, breathers and rational solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Dong, Min-Jie
    Tian, Li-Xin
    Shi, Wei
    Wei, Jing-Dong
    Wang, Yun
    NONLINEAR DYNAMICS, 2024, 112 (12) : 10259 - 10275
  • [37] New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wazwaz, Abdul-Majid
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 473 - 479
  • [38] Symbolic computation and new families of exact soliton-like solutions of Konopelchenko-Dubrovsky equations
    Xia, TC
    Lü, ZS
    Zhang, HQ
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 561 - 566
  • [39] Bifurcation of traveling wave solutions of (2+1) dimensional Konopelchenko-Dubrovsky equations
    He, Tian-lan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) : 773 - 783
  • [40] Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique
    Barman, Hemonta Kumar
    Akbar, M. Ali
    Osman, M. S.
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    Abdel-Aty, Abdel-Haleem
    Eleuch, Hichem
    RESULTS IN PHYSICS, 2021, 24