Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention

被引:0
|
作者
Gao, Yuan [1 ]
Miyata, Shohei [1 ]
Akashi, Yasunori [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo, Japan
关键词
Solar radiation prediction; Interpretable deep learning; Graph neural network; Attention;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid development of high-performance computing technology, data-driven models, especially deep learning models, are being used increasingly for solar radiation prediction. However, the characteristics of the black box model lead to a lack of interpretability in their prediction results. This limits the application of the model in final optimization scenarios (such as model predictive control), as operation managers might not fully trust models lacking explanatory results. In our study, models were proposed based on the prediction model of the recurrent neural network. We hope to improve the interpretability of the models through the design and improvement of the model structure, thereby increasing the credibility of the model results. The interpretability in time and spatial dependencies of the prediction process were studied by the attention mechanism and graph neural network, respectively. Our results showed that the deep learning model, with attention, could effectively shift the attention mechanism to adapt to varying prediction target hours. The graph neural network expresses the most relevant variables in the dataset related to solar radiation through a self-learning graph structure. The results showed that solar radiation is connected directly with month, hour, temperature, penetrating rainfall, water vapor pressure, and radiation time.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Development of models for hourly solar radiation prediction
    Seo, Donghyun
    Huang, Joe
    Krarti, Moncef
    ASHRAE TRANSACTIONS 2008, VOL 114, PT 1, 2008, 114 : 392 - +
  • [12] ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction
    Cheng, Danpeng
    Sha, Wuxin
    Han, Qigao
    Tang, Shun
    Zhong, Jun
    Du, Jinqiao
    Tian, Jie
    Cao, Yuan-Cheng
    ELECTROCHIMICA ACTA, 2024, 473
  • [13] Workflow performance prediction based on graph structure aware deep attention neural network
    Yu, Jixiang
    Gao, Ming
    Li, Yuchan
    Zhang, Zehui
    Ip, Wai Hung
    Yung, Kai Leung
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2022, 27
  • [14] Interpretable clinical prediction via attention-based neural network
    Peipei Chen
    Wei Dong
    Jinliang Wang
    Xudong Lu
    Uzay Kaymak
    Zhengxing Huang
    BMC Medical Informatics and Decision Making, 20
  • [15] Interpretable clinical prediction via attention-based neural network
    Chen, Peipei
    Dong, Wei
    Wang, Jinliang
    Lu, Xudong
    Kaymak, Uzay
    Huang, Zhengxing
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (Suppl 3)
  • [16] A deep learning based hybrid method for hourly solar radiation forecasting
    Lai, Chun Sing
    Zhong, Cankun
    Pan, Keda
    Ng, Wing W.Y.
    Lai, Loi Lei
    Expert Systems with Applications, 2021, 177
  • [17] A deep learning based hybrid method for hourly solar radiation forecasting
    Lai, Chun Sing
    Zhong, Cankun
    Pan, Keda
    Ng, Wing W. Y.
    Lai, Loi Lei
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 177
  • [18] Multilayer Perceptron Neural Network Supervised Learning Based Solar Radiation Prediction
    Devi, M. Shyamala
    Anandaraj, A. Peter Soosai
    Thanooj, K. Venkata
    Guptha, P. V. Sandeep
    Reddy, A. Jayanth
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 625 - 634
  • [19] Deep Neural Network Visualization Based on Interpretable Basis Decomposition and Knowledge Graph
    Ruan L.
    Wen S.-S.
    Niu Y.-M.
    Li S.-N.
    Xue Y.-Z.
    Ruan T.
    Xiao L.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (09): : 1786 - 1805
  • [20] Attention-based interpretable neural network for building cooling load prediction
    Li, Ao
    Xiao, Fu
    Zhang, Chong
    Fan, Cheng
    APPLIED ENERGY, 2021, 299