CRUSHING C60 TO DIAMOND AT ROOM-TEMPERATURE

被引:168
|
作者
REGUEIRO, MN [1 ]
MONCEAU, P [1 ]
HODEAU, JL [1 ]
机构
[1] CNRS,CRISTALLOG LAB,F-38042 GRENOBLE 9,FRANCE
关键词
D O I
10.1038/355237a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
C60 MOLECULES are extremely stable, withstanding hydrostatic pressures of up to at least 20 GPa (ref. 1). It has been proposed that at high pressures they could form a solid harder than diamond 2. On the other hand, electrical resistivity measurements 3 have revealed the formation of an insulating phase above 20 GPa, which was attributed to the low-symmetry state found in X-ray diffraction studies under nonhydrostatic compression 1. Here we report that rapid, nonhydrostatic compression of C60 to pressures of 20 +/- 5 GPa transforms it instantaneously into bulk polycrystalline diamond at room temperature. Our measurements place a limit on the stability of the C60 molecular phase under nonhydrostatic pressure. The high efficiency and fast kinetics at room temperature suggest the possibility of using this transformation for fabrication of industrial diamonds.
引用
收藏
页码:237 / 239
页数:3
相关论文
共 50 条
  • [31] Room-Temperature Plastic Deformation in Diamond Nanopillars
    Fuller, Jon
    An, Qi
    MATTER, 2020, 2 (05) : 1082 - 1084
  • [32] MECHANISM OF THE RAPID ROTATION OF C-60 MOLECULE IN C-60 CRYSTAL AT ROOM-TEMPERATURE
    XU, ZJ
    YAN, JM
    CHINESE SCIENCE BULLETIN, 1995, 40 (03): : 217 - 221
  • [33] STRUCTURE OF C-60 - PARTIAL ORIENTATIONAL ORDER IN THE ROOM-TEMPERATURE MODIFICATION OF C-60
    BURGI, HB
    RESTORI, R
    SCHWARZENBACH, D
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1993, 49 : 832 - 838
  • [34] Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface:: Playing nanosoccer
    Griessl, SJH
    Lackinger, M
    Jamitzky, F
    Markert, T
    Hietschold, M
    Heckl, WM
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (31): : 11556 - 11560
  • [35] Plasticity of diamond at room temperature and determination of its hardness using an atomic force microscope with an ultrahard C60 fullerite tip
    Blank, VD
    Popov, MY
    L'vova, NA
    Gogolinskii, KV
    Reshetov, VN
    TECHNICAL PHYSICS LETTERS, 1997, 23 (07) : 546 - 547
  • [36] Plasticity of diamond at room temperature and determination of its hardness using an atomic force microscope with an ultrahard C60 fullerite tip
    V. D. Blank
    M. Yu. Popov
    N. A. L’vova
    K. V. Gogolinskii
    V. N. Reshetov
    Technical Physics Letters, 1997, 23 : 546 - 547
  • [37] Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers
    Ke, Weijun
    Zhao, Dewei
    Grice, Corey R.
    Cimaroli, Alexander J.
    Ge, Jie
    Tao, Hong
    Lei, Hongwei
    Fang, Guojia
    Yan, Yanfa
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (35) : 17971 - 17976
  • [38] AMORPHOUS DIAMOND FROM C60 FULLERENE
    HIRAI, H
    KONDO, K
    YOSHIZAWA, N
    SHIRAISHI, M
    APPLIED PHYSICS LETTERS, 1994, 64 (14) : 1797 - 1799
  • [39] Simulations of C60 in collision with diamond surfaces
    Pan, ZY
    Xie, J
    Man, ZY
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1998, 135 (1-4): : 346 - 349
  • [40] Nanocrystalline diamond synthesized from C60
    Dubrovinskaia, N
    Dubrovinsky, L
    Langenhorst, F
    Jacobsen, S
    Liebske, C
    DIAMOND AND RELATED MATERIALS, 2005, 14 (01) : 16 - 22