A THEORETICAL INVESTIGATION INTO QUANTITATIVE MODAL LOGIC

被引:6
|
作者
LIAU, CJ [1 ]
LIN, BIP [1 ]
机构
[1] NATL TAIWAN UNIV,DEPT COMP SCI & INFORMAT ENGN,TAIPEI 10764,TAIWAN
关键词
APPROXIMATE REASONING; POSSIBILISTIC LOGIC; QUANTITATIVE MODAL LOGIC; FILTRATION; POSSIBILITY THEORY;
D O I
10.1016/0165-0114(95)00006-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantitative modal logic (QML) is a multi-modal formulation of possibilistic reasoning with the capacity of representing and reasoning about higher order uncertainty. In this paper, some results about QML and possibility theory are investigated. First, the concept of filtration in classical modal logic is introduced into QML and the fundamental filtration theorem is proved. Second, as a corollary, the finite model property of QML is provided. Finally, the theoretical and practical implications of finite model property are discussed.
引用
收藏
页码:355 / 363
页数:9
相关论文
共 50 条
  • [31] THE TRUE MODAL LOGIC
    MENZEL, C
    JOURNAL OF PHILOSOPHICAL LOGIC, 1991, 20 (04) : 331 - 374
  • [32] MODAL HYBRID LOGIC
    Indrzejczak, Andrzej
    LOGIC AND LOGICAL PHILOSOPHY, 2007, 16 (2-3) : 147 - 257
  • [33] DEVELOPMENT OF MODAL LOGIC
    FALMAGNE, RJ
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1974, 4 (NA4) : 248 - 248
  • [34] A modal nonmonotonic logic
    Lin, ZQ
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1996, 39 (03): : 303 - 321
  • [35] Refinement modal logic
    Bozzelli, Laura
    van Ditmarsch, Hans
    French, Tim
    Hales, James
    Pinchinat, Sophie
    INFORMATION AND COMPUTATION, 2014, 239 : 303 - 339
  • [36] Modal logic and philosophy
    Restall, G
    AUSTRALASIAN JOURNAL OF PHILOSOPHY, 2003, 81 (03) : 441 - 442
  • [37] MODAL LOGIC WITH NAMES
    GARGOV, G
    GORANKO, V
    JOURNAL OF PHILOSOPHICAL LOGIC, 1993, 22 (06) : 607 - 636
  • [38] On Aristotelian modal logic
    Wolff, M
    ZEITSCHRIFT FUR PHILOSOPHISCHE FORSCHUNG, 2005, 59 (04): : 547 - 554
  • [39] Modal logic and dioids
    Pessanha, CP
    Santos-Mendes, R
    POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 31 - 38
  • [40] A modal logic for KLAIM
    De Nicola, R
    Loreti, M
    ALGEBRAIC METHODOLOGY AND SOFTWARE TECHNOLOGY, PROCEEDINGS, 2000, 1816 : 339 - 354