KOROVKIN THEORY IN NORMED ALGEBRAS

被引:3
|
作者
BECKHOFF, F
机构
关键词
D O I
10.4064/sm-100-3-219-228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T union {t* o t\ t is-an-element-of T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条