KOROVKIN TYPE INEQUALITIES IN REAL NORMED VECTOR SPACES

被引:0
|
作者
George A. Anastassiou [1 ]
机构
[1] Department of Mathematics University of Rhode Island Kingston Rhode Island 02881-0816
关键词
KOROVKIN TYPE INEQUALITIES IN REAL NORMED VECTOR SPACES;
D O I
暂无
中图分类号
学科分类号
摘要
0.IntroductionThe convergence of a sequence of positive linear operators{L;};to the unitary operator Ⅰ on C([a,b]),[a.b](?) was studiedthoroughly by P.P.Korovkin(1953)(see[16]).Later O.Shishaand B.Mond(1968)(see[26])recovered this convergence through
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [1] Gruss type inequalities in normed spaces
    Otachel, Zdzislaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 14 - 24
  • [2] The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces
    M. Huang
    S. Ponnusamy
    X. Wang
    Results in Mathematics, 2010, 57 : 239 - 256
  • [3] The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces
    Huang, M.
    Ponnusamy, S.
    Wang, X.
    RESULTS IN MATHEMATICS, 2010, 57 (3-4) : 239 - 256
  • [4] BOHMAN-KOROVKIN-WULBERT OPERATORS ON NORMED SPACES
    TAKAHASI, SE
    JOURNAL OF APPROXIMATION THEORY, 1993, 72 (02) : 174 - 184
  • [5] GEOMETRIC INEQUALITIES IN NORMED SPACES
    BUSENBERG, S
    MARTELLI, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1992, 22 (02) : 477 - 491
  • [6] κ-normed topological vector spaces
    Lyudkovskii, SV
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (01) : 141 - 154
  • [7] On Pecaric-Rajic-Dragomir-Type Inequalities in Normed Linear Spaces
    Zhao Changjian
    Chen, Chur-Jen
    Cheung, Wing-Sum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [8] ON DIFFERENTIATION IN NORMED VECTOR SPACES
    FLETT, TM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (167P): : 523 - &
  • [9] ON SOME INEQUALITIES IN NORMED LINEAR SPACES
    Dragomir, S. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (03): : 225 - 237
  • [10] Penalty-Based Data Aggregation in Real Normed Vector Spaces
    Coroianu, Lucian
    Gagolewski, Marek
    NEW TRENDS IN AGGREGATION THEORY, 2019, 981 : 160 - 171