Interactive Data Mining for Large-Scale Image Databases Based on Formal Concept Analysis

被引:5
|
作者
Tanabata, Takanari [1 ]
Sawase, Kazuhito [2 ]
Nobuhara, Hajime [2 ]
Bede, Barnabas [3 ]
机构
[1] Natl Inst Agrobiol Sci, Photobiol & Photosynth Res Unit, 2-1-2 Kannondai, Tsukuba, Ibaraki 3058602, Japan
[2] Univ Tsukuba, Dept Intelligent Interact Technol, Tsukuba, Ibaraki 3058573, Japan
[3] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
formal concept analysis; human-machine interface; lattice structure; image processing; visualization;
D O I
10.20965/jaciii.2010.p0303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to perform an interactive data-mining for huge image databases efficiently, a visualization interface based on Formal Concept Analysis (FCA) is proposed. The proposed interface system provides an intuitive lattice structure enabling users freely and easily to select FCA attributes and to view different aspects of the Hasse diagram of the lattice of a given image database. The investigation environment is implemented using C++ and the OpenCV library on a personal computer (CPU = 2.13 GHz, MM = 2 GB). In visualization experiments using 1,000 Corel Image Gallery images, we test image features such as color, edge, and face detectors as FCA attributes. Experimental analysis confirms the effectiveness of the proposed interface and its potential as an efficient data-mining tool.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条
  • [41] Cistrome Explorer: an interactive visual analysis tool for large-scale epigenomic data
    L'Yi, Sehi
    Keller, Mark S.
    Dandawate, Ariaki
    Taing, Len
    Chen, Chen-Hao
    Brown, Myles
    Meyer, Clifford A.
    Gehlenborg, Nils
    BIOINFORMATICS, 2023, 39 (02)
  • [42] Interactive Lattice Visualization of Huge Image Database by Formal Concept Analysis
    Sawase, Kazuhito
    Nobuhara, Hajime
    2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 227 - 232
  • [43] A Data Cleansing Method for Clustering Large-Scale Transaction Databases
    Loh, Woong-Kee
    Moon, Yang-Sae
    Kang, Jun-Gyu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (11) : 3120 - 3123
  • [44] QuDA: Applying formal concept analysis in a data mining environment
    Grigoriev, PA
    Yevtushenko, SA
    CONCEPT LATTICES, PROCEEDINGS, 2004, 2961 : 386 - 393
  • [45] Takeaways in Large-scale Human Mobility Data Mining
    Chen, Guangshuo
    Viana, Aline Carneiro
    Fiore, Marco
    2018 IEEE INTERNATIONAL SYMPOSIUM ON LOCAL AND METROPOLITAN AREA NETWORKS (LANMAN), 2018, : 55 - 60
  • [46] Mining large-scale smartphone data for personality studies
    Chittaranjan, Gokul
    Blom, Jan
    Gatica-Perez, Daniel
    PERSONAL AND UBIQUITOUS COMPUTING, 2013, 17 (03) : 433 - 450
  • [47] Mining large-scale smartphone data for personality studies
    Gokul Chittaranjan
    Jan Blom
    Daniel Gatica-Perez
    Personal and Ubiquitous Computing, 2013, 17 : 433 - 450
  • [48] Mining categorical concept hierarchies in large databases
    Chien, BC
    Liao, SY
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING, 2003, : 244 - 249
  • [49] Introduction to Special Issue on Large-Scale Data Mining
    Sun, Jimeng
    Liu, Yan
    Tang, Jie
    Apte, Chid
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2011, 5 (02)
  • [50] Towards a generalisation of formal concept analysis for data mining purposes
    Valverde-Albacete, FJ
    Peláez-Moreno, C
    FORMAL CONCEPT ANALYSIS, PROCEEDINGS, 2006, 3874 : 161 - 176