A Spline-Projection Method for Ill-Posed Integrodifferential Equations

被引:0
|
作者
Agachev, Yu. R. [1 ]
机构
[1] Kazan VI Lenin State Univ, Ul Kremlyovskaya 18, Kazan 420008, Russia
关键词
Sobolev space; integrodifferential equation; polynomial spline; projection method; convergence;
D O I
10.3103/S1066369X08090016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the general linear boundary value problem for ill-posed integrodifferential equations of an arbitrarily fixed finite order. We theoretically substantiate one version of the general spline-projection method. In particular, the obtained general results allow us to deduce the convergence of the spline methods of collocation and subdomains.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [11] ILL-POSED ABSTRACT VOLTERRA EQUATIONS
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 93 (107): : 49 - 63
  • [12] Approximation of ill-posed Boussinesq equations
    Gomes, DA
    Valls, C
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2004, 19 (04): : 345 - 357
  • [13] A generalized global Arnoldi method for ill-posed matrix equations
    Bouhamidi, A.
    Jbilou, K.
    Reichel, L.
    Sadok, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2078 - 2089
  • [14] Parallel regularized Newton method for nonlinear ill-posed equations
    Pham Ky Anh
    Cao Van Chung
    NUMERICAL ALGORITHMS, 2011, 58 (03) : 379 - 398
  • [15] Homotopy Perturbation Method for Nonlinear Ill-posed Operator Equations
    Cao, Li
    Han, Bo
    Wang, Wei
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (10) : 1319 - 1322
  • [16] Dynamical System Method for Solving Ill-Posed Operator Equations
    Xingjun Luo and Suhua Yang Department of Mathematics and Computer Science
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (01) : 54 - 62
  • [17] Parallel regularized Newton method for nonlinear ill-posed equations
    Pham Ky Anh
    Cao Van Chung
    Numerical Algorithms, 2011, 58 : 379 - 398
  • [18] A METHOD FOR SOLVING ILL-POSED LINEAR OPERATOR-EQUATIONS
    TRUMMER, MR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) : 729 - 737
  • [19] An implicit Landweber method for nonlinear ill-posed operator equations
    Wang, Wei
    Han, Bo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 607 - 613
  • [20] Regularization method for an ill-posed Cauchy problem for elliptic equations
    Benrabah, Abderafik
    Boussetila, Nadjib
    Rebbani, Faouzia
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (03): : 311 - 329