CONGRUENCES MODULO 5 FOR PARTITIONS INTO AT MOST FOUR PARTS

被引:0
|
作者
Hirschhorn, Michael D. [1 ]
机构
[1] UNSW, Sch Math & Stat, Sydney, NSW, Australia
来源
FIBONACCI QUARTERLY | 2018年 / 56卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give quick proofs of two congruences modulo 5 for p(n, 4), the number of partitions of n into at most four parts, discovered and proved by Ali H. Al-Saedi, as well as a number of other congruences and related identities.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 50 条
  • [31] Quadratic forms and congruences for l-regular partitions modulo 3, 5 and 7
    Hou, Qing-Hu
    Sun, Lisa H.
    Zhang, Li
    ADVANCES IN APPLIED MATHEMATICS, 2015, 70 : 32 - 44
  • [32] More infinite families of congruences modulo 5 for broken 2-diamond partitions
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2017, 170 : 250 - 262
  • [33] CONGRUENCES MODULO-5
    KAPPUS, H
    FIBONACCI QUARTERLY, 1986, 24 (02): : 181 - 182
  • [34] Congruences modulo 4 for broken k-diamond partitions
    Ernest X. W. Xia
    The Ramanujan Journal, 2018, 45 : 331 - 348
  • [35] Congruences modulo 7 for broken 3-diamond partitions
    Liu, Eric H.
    Du, Wenjing
    RAMANUJAN JOURNAL, 2019, 50 (02): : 253 - 262
  • [36] Congruences modulo 4 for the number of 3-regular partitions
    Ballantine, Cristina
    Merca, Mircea
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1577 - 1583
  • [37] Congruences modulo 4 for broken k-diamond partitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 45 (02): : 331 - 348
  • [38] Congruences for some l-regular partitions modulo l
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2015, 152 : 105 - 117
  • [39] Congruences modulo 7 for broken 3-diamond partitions
    Eric H. Liu
    Wenjing Du
    The Ramanujan Journal, 2019, 50 : 253 - 262
  • [40] Congruences modulo powers of 3 for k-colored partitions
    Wen, Xin-Qi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,