A PARALLEL ALGORITHM FOR THE NONSYMMETRIC EIGENVALUE PROBLEM

被引:17
|
作者
DONGARRA, JJ [1 ]
SIDANI, M [1 ]
机构
[1] OAK RIDGE NATL LAB,MATH SCI SECT,OAK RIDGE,TN 37831
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1993年 / 14卷 / 03期
关键词
EIGENVALUE PROBLEM; DIVIDE AND CONQUER; PARALLEL COMPUTING;
D O I
10.1137/0914035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a parallel algorithm for computing the eigenvalues and eigenvectors of a nonsymmetric matrix. The algorithm is based on a divide-and-conquer procedure and uses an iterative refinement technique.
引用
收藏
页码:542 / 569
页数:28
相关论文
共 50 条
  • [41] ROBUST PARALLEL IMPLEMENTATION OF A LANCZOS-BASED ALGORITHM FOR AN STRUCTURED ELECTROMAGNETIC EIGENVALUE PROBLEM
    Bernabeu, Miguel O.
    Taroncher, Mariam
    Garcia, Victor M.
    Vidal, Ana
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2007, 8 (03): : 263 - 270
  • [42] A Parallel Algorithm for Solving a Partial Eigenvalue Problem for Block-Diagonal Bordered Matrices
    O. M. Khimich
    O. V. Popov
    O. V. Chistyakov
    V. A. Sidoruk
    Cybernetics and Systems Analysis, 2020, 56 : 913 - 923
  • [43] Parallel implementation in PC clusters of a Lanczos-based algorithm for an electromagnetic eigenvalue problem
    Bernabeu, Miguel Oscar
    Taroncher, Mariam
    Garcia, Victor M.
    Vidal, Ana
    ISPDC 2006: FIFTH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, : 296 - +
  • [44] A new constrained optimization model for solving the nonsymmetric stochastic inverse eigenvalue problem
    Steidl, Gabriele
    Winkler, Maximilian
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (18): : 3419 - 3448
  • [45] ELPA: A Parallel Solver for the Generalized Eigenvalue Problem
    Bungartz, Hans-Joachim
    Carbogno, Christian
    Galgon, Martin
    Huckle, Thomas
    Koecher, Simone
    Kowalski, Hagen-Henrik
    Kus, Pavel
    Lang, Bruno
    Lederer, Hermann
    Manin, Valeriy
    Marek, Andreas
    Reuter, Karsten
    Rippl, Michael
    Scheffler, Matthias
    Scheurer, Christoph
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 647 - 668
  • [46] A fully parallel method for the singular eigenvalue problem
    Li, KY
    Uvah, J
    Zhao, SB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) : 1279 - 1284
  • [47] A new algorithm for the generalized eigenvalue problem
    Huper, K
    Helmke, U
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 35 - 38
  • [48] A NEW ALGORITHM FOR THE EIGENVALUE PROBLEM OF MATRICES
    CAI, DY
    HONG, J
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (03) : 313 - 320
  • [49] AN ALGORITHM FOR THE MULTIINPUT EIGENVALUE ASSIGNMENT PROBLEM
    ARNOLD, M
    DATTA, BN
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (10) : 1149 - 1152
  • [50] AN ALGORITHM FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM
    BUNSEGERSTNER, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) : 43 - 68