Local convergence of deformed Jarratt-type methods in Banach space without inverses

被引:1
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
关键词
Jarratt-type methods; Banach space; local convergence; Frechet-derivative;
D O I
10.1142/S1793557116500157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence analysis for the Jarratt-type method of high convergence order in order to approximate a solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypotheses on the first Frechet-derivative of the operator involved. Earlier studies use hypotheses up to the third Frechet-derivative. Hence, the applicability of these methods is expanded under weaker hypotheses and less computational cost for the constants involved in the convergence analysis. Numerical examples are also provided in this study.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Two new classes of optimal Jarratt-type fourth-order methods
    Soleymani, F.
    Khattri, S. K.
    Vanani, S. Karimi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 847 - 853
  • [12] Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences
    Behl, Ramandeep
    Argyros, Ioannis K.
    Mallawi, Fouad Othman
    Argyros, Christopher I.
    SYMMETRY-BASEL, 2021, 13 (07):
  • [13] Local convergence for deformed Chebyshev-type method in Banach space under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    COGENT MATHEMATICS, 2015, 2
  • [14] Ball Convergence for an Inverse Free Jarratt-Type Method Under Hölder Conditions
    Argyros I.K.
    George S.
    International Journal of Applied and Computational Mathematics, 2017, 3 (1) : 157 - 164
  • [15] AN INVERSE-FREE JARRATT TYPE APPROXIMATION IN A BANACH SPACE
    I.K.Argyros
    Q.Qian
    Approximation Theory and Its Applications, 1996, (01) : 19 - 30
  • [16] Unified local convergence for a certain family of methods in Banach space
    Argyros I.K.
    Kansal M.
    SeMA Journal, 2016, 73 (4) : 325 - 334
  • [17] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [18] Local convergence of deformed Halley method in Banach space under Holder continuity conditions
    Argyros, Loannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 246 - 254
  • [19] A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 463 - 470
  • [20] Ball convergence analysis of Jarratt-type sixth-order method and its applications in solving some chemical problems
    Wenshuo Li
    Xiaofeng Wang
    Computational and Applied Mathematics, 2024, 43