FPGA-Based Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction

被引:26
|
作者
Dalia Pano-Azucena, Ana [1 ]
Tlelo-Cuautle, Esteban [1 ]
Tan, Sheldon X. -D. [2 ]
Ovilla-Martinez, Brisbane [3 ]
Gerardo de la Fraga, Luis [4 ]
机构
[1] INAOE, Dept Elect, Puebla 72840, Mexico
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[3] Univ Autonoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, DF, Mexico
[4] CINVESTAV, Dept Comp Sci, Mexico City 07360, DF, Mexico
来源
TECHNOLOGIES | 2018年 / 6卷 / 04期
关键词
chaos; time series prediction; FPGA; multilayer perceptron;
D O I
10.3390/technologies6040090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many biological systems and natural phenomena exhibit chaotic behaviors that are saved in time series data. This article uses time series that are generated by chaotic oscillators with different values of the maximum Lyapunov exponent (MLE) to predict their future behavior. Three prediction techniques are compared, namely: artificial neural networks (ANNs), the adaptive neuro-fuzzy inference system (ANFIS) and least-squares support vector machines (SVM). The experimental results show that ANNs provide the lowest root mean squared error. That way, we introduce a multilayer perceptron that is implemented using a field-programmable gate array (FPGA) to predict experimental chaotic time series.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Implementation of FPGA-based real time novel chaotic oscillator
    Koyuncu, Ismail
    Ozcerit, Ahmet Turan
    Pehlivan, Ihsan
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 49 - 59
  • [2] Implementation of FPGA-based real time novel chaotic oscillator
    Ismail Koyuncu
    Ahmet Turan Ozcerit
    Ihsan Pehlivan
    Nonlinear Dynamics, 2014, 77 : 49 - 59
  • [3] Prediction of Chaotic Time-Series with Different MLE Values using FPGA-based ANNs
    Pano-Azucena, A. D.
    Tlelo-Cuautle, E.
    de la Fraga, L. G.
    Sanchez-Lopez, C.
    Rangel-Magdaleno, J. J.
    Tan, Sheldon X. -D.
    2017 14TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD), 2017,
  • [4] Multilayer Perceptron Network Optimization for Chaotic Time Series Modeling
    Qiao, Mu
    Liang, Yanchun
    Tavares, Adriano
    Shi, Xiaohu
    ENTROPY, 2023, 25 (07)
  • [5] A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron
    Skodzik, Jan
    Altmann, Vlado
    Wagner, Benjamin
    Danielis, Peter
    Timmermann, Dirk
    2013 IEEE 27TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2013, : 429 - 436
  • [6] Enhanced FPGA implementation of Echo State Networks for chaotic time series prediction
    Gonzalez-Zapata, Astrid Maritza
    Fraga, Luis Gerardo de la
    Ovilla-Martinez, Brisbane
    Tlelo-Cuautle, Esteban
    Cruz-Vega, Israel
    INTEGRATION-THE VLSI JOURNAL, 2023, 92 : 48 - 57
  • [7] Pipeline FPGA-Based Implementations of ANNs for the Prediction of up to 600-Steps-Ahead of Chaotic Time Series
    Pano-Azucena, Ana Dalia
    Tlelo-Cuautle, Esteban
    Ovilla-Martinez, Brisbane
    de la Fraga, Luis Gerardo
    Li, Rui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (09)
  • [8] Bounded Global Irradiation Prediction Based on Multilayer Perceptron and Time Series Formalism
    Voyant, Cyril
    Notton, Gilles
    Nivet, Marie Laure
    Motte, Fabrice
    Fouilloy, Alexis
    Paoli, Christophe
    2017 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES, DRIVES AND POWER SYSTEMS (ELMA), 2017, : 82 - 85
  • [9] Time Series Prediction with Multilayer Perceptron (MLP): A New Generalized Error Based Approach
    Shiblee, Md.
    Kalra, P. K.
    Chandra, B.
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II, 2009, 5507 : 37 - +
  • [10] FPGA-based Acceleration of Time Series Similarity Prediction: From Cloud to Edge
    Kalantar, Amin
    Zimmerman, Zachary
    Brisk, Philip
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2023, 16 (01)