PARTITIONING STRATEGIES IN RUNGE-KUTTA TYPE METHODS

被引:24
|
作者
WEINER, R
ARNOLD, M
RENTROP, P
STREHMEL, K
机构
[1] MARTIN LUTHER UNIV, FACHBEREICH MATH & INFORMAT, O-4010 HALLE, GERMANY
[2] UNIV ROSTOCK, FACHBEREICH MATH, O-2500 ROSTOCK, GERMANY
关键词
D O I
10.1093/imanum/13.2.303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of ode's suffers from stability constraints, if there are solution components with different time constants. Two recommended approaches in software packages to handle these difficulties (i) automatic switching between stiff and nonstiff methods and (ii) the use of partitioned methods for a given splitting into stiff and nonstiff subsystems, are presented and investigated for Runge-Kutta type methods. A strategy for a dynamic partitioning in these methods is discussed. Numerical results illustrate the efficiency of partitioning.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [21] Selection strategies for set-valued Runge-Kutta methods
    Baier, R
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 149 - 157
  • [23] Runge-Kutta methods of special form
    Ixaru, L. Gr.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [24] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [25] FAMILIES OF IMBEDDED RUNGE-KUTTA METHODS
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) : 857 - 875
  • [26] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [27] Volume preservation by Runge-Kutta methods
    Bader, Philipp
    McLaren, David I.
    Quispel, G. R. W.
    Webb, Marcus
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 123 - 137
  • [28] Embedded additive Runge-Kutta methods
    Sayfy, A
    Aburub, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (08) : 945 - 953
  • [29] Multirate Partitioned Runge-Kutta Methods
    M. Günther
    A. Kværnø
    P. Rentrop
    BIT Numerical Mathematics, 2001, 41 : 504 - 514
  • [30] ORDER BOUND FOR RUNGE-KUTTA METHODS
    BUTCHER, JC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) : 304 - 315