NEGATIVELY CURVED GRAPHITE AND TRIPLY PERIODIC MINIMAL-SURFACES

被引:21
|
作者
TERRONES, H [1 ]
MACKAY, AL [1 ]
机构
[1] UNIV LONDON BIRKBECK COLL,DEPT CRYSTALLOG,LONDON WC1E 7HX,ENGLAND
关键词
D O I
10.1007/BF01277558
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Weierstrass representation has been used to construct negatively curved graphite in which atoms rest no a perfect triply periodic minimal surface. By applying the Bonnet transformation on a patch of the D surface decorated with graphite we have been able to construct the Gyroid and P minimal surfaces. Curvatures, densities and lattice parameters have been calculated. It has been found that the maximum Gaussian curvature for our negatively curved structures is less in magnitude than the Gaussian curvature of C60. In addition, a new periodic graphitic set with the same topology as the I-WP minimal surface has been obtained by introducing pentagonal and octagonal rings.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条
  • [31] CONDITIONS OF SYMMETRY FOR PERIODIC MINIMAL-SURFACES OF EQUILIBRIUM
    KOCH, E
    FISCHER, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 178 (1-4): : 125 - 127
  • [32] TRIPLY PERIODIC MINIMAL BALANCE SURFACES - A CORRECTION
    KOCH, E
    FISCHER, W
    ACTA CRYSTALLOGRAPHICA SECTION A, 1993, 49 : 209 - 210
  • [33] Continuous transitions of triply periodic minimal surfaces
    Tian, Lihao
    Sun, Bingteng
    Yan, Xin
    Sharf, Andrei
    Tu, Changhe
    Lu, Lin
    ADDITIVE MANUFACTURING, 2024, 84
  • [34] Fluid permeabilities of triply periodic minimal surfaces
    Jung, Y
    Torquato, S
    PHYSICAL REVIEW E, 2005, 72 (05)
  • [35] DESCRIPTION OF TRIPLY-PERIODIC MINIMAL SURFACES
    Fogden, Andrew
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C549 - C549
  • [36] Entropy, minimal surfaces and negatively curved manifolds
    Sanders, Andrew
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 336 - 370
  • [37] INFINITE PERIODIC MINIMAL-SURFACES - A MODEL FOR BLUE PHASES
    DUBOISVIOLETTE, E
    PANSU, B
    PIERANSKI, P
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 192 : 221 - 237
  • [38] THE GEOMETRY, TOPOLOGY, AND EXISTENCE OF DOUBLY PERIODIC MINIMAL-SURFACES
    MEEKS, WH
    ROSENBERG, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (14): : 605 - 609
  • [39] INFINITE PERIODIC MINIMAL-SURFACES AND THEIR CRYSTALLOGRAPHY IN THE HYPERBOLIC PLANE
    SADOC, JF
    CHARVOLIN, J
    ACTA CRYSTALLOGRAPHICA SECTION A, 1989, 45 : 10 - 20
  • [40] MINIMAL-SURFACES
    CLIBORN, JH
    JORDAN, B
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04): : 376 - 376