Dynamical behavior of traveling wave solutions for the K(2, 2) equation

被引:0
|
作者
Zhang, Lina [1 ]
机构
[1] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Yunnan, Peoples R China
来源
TURKISH JOURNAL OF PHYSICS | 2011年 / 35卷 / 02期
基金
中国国家自然科学基金;
关键词
K(2; 2); equation; singular traveling wave system; nilpotent; smooth periodic wave;
D O I
10.3906/fiz-1012-69
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss the qualitative behavior of degenerate singular points for the K(2, 2) equation. By analyzing the different dynamical behaviors of the singular system and its associated regular system, we come to the conclusion that for the singular system the smoothness property of its orbits, which have intersection point(s) with the singular straight line, will not be destroyed. Meanwhile, the corresponding smooth traveling wave solutions for the K(2, 2) equation are obtained.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条
  • [21] Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation
    Elbrolosy, M. E.
    Elmandouh, A. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [22] Exact traveling wave solutions and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation
    Li, Ji-bin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (02): : 153 - 164
  • [23] Exact traveling wave solutions and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation
    Ji-bin LI Department of Mathematics
    Science in China(Series A:Mathematics), 2007, (02) : 153 - 164
  • [24] Numerical and dynamical behaviors of nonlinear traveling wave solutions of the Kudryashov-Sinelshchikov equation
    Karakoc, Seydi Battal Gazi
    Saha, Asit
    Bhowmik, Samir Kumar
    Sucu, Derya Yildirim
    WAVE MOTION, 2023, 118
  • [25] Traveling Wave Solutions of a Generalized Camassa-Holm Equation: A Dynamical System Approach
    Zhang, Lina
    Song, Tao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [26] Exact Traveling Wave Solutions of the Krichever-Novikov Equation: A Dynamical System Approach
    Kou, KitIan
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04):
  • [27] ON THE TRAVELING WAVE SOLUTIONS FOR A NONLINEAR DIFFUSION-CONVECTION EQUATION: DYNAMICAL SYSTEM APPROACH
    Li, Jibin
    Zhang, Yi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03): : 1119 - 1138
  • [28] Dynamical Behavior and Wave Speed Perturbations in the (2 + 1) pKP Equation
    Wen-Xiu Ma
    Enas Y. Abu El Seoud
    Mohamed R. Ali
    R. Sadat
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [29] Soliton and Periodic Wave Solutions to the Osmosis K(2,2) Equation
    Zhou, Jiangbo
    Tian, Lixin
    Fan, Xinghua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [30] Traveling wave solutions for time-fractional K(m, n) equation
    Zaidan, Lahib Ibrahim
    Darvishi, M. T.
    OPTIK, 2017, 142 : 564 - 575