PERCOLATION ON THE SQUARE LATTICE IN A LXM GEOMETRY - ANALYSIS OF PERCOLATION CLUSTERS PROPERTIES

被引:13
|
作者
MONETTI, RA
ALBANO, EV
机构
[1] Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900, Sucursal 4
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1993年 / 90卷 / 03期
关键词
D O I
10.1007/BF01433059
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A study of the site percolation model on the square lattice in a L x M geometry at critically is presented. For L much less than M one observes the growth of numerous percolation clusters in the L-direction in contrast to the absence of percolation in the M-direction. Consequently, relevant properties of these clusters such us for example the average number of clusters (N(CL)), the cluster length distribution (P(l, L), with l=cluster length in the M direction) and average cluster length (l(CL)), are studied by means of the Monte Carlo technique and analyzed on the basis of finite-size scaling arguments. The following behavior is found: N(CL)is-approximately-equal-to (3/8) (L/M)-delta, with delta = 1; and l(CL) is-approximately-equal-to 2.0 L. Also the distribution P(1, L) is of the exponential-exponential type and their characteristic exponents are evaluated.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条
  • [41] PERCOLATION EXPRESSION FOR ISING FULLY FRUSTRATED SQUARE LATTICE
    KASAI, Y
    OHNAKA, K
    PROGRESS OF THEORETICAL PHYSICS, 1989, 82 (06): : 1057 - 1065
  • [42] SERIES EXPANSION OF THE PERCOLATION PROBABILITY FOR THE DIRECTED SQUARE LATTICE
    BAXTER, RJ
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (15): : 3193 - 3204
  • [43] Square lattice site percolation thresholds for complex neighbourhoods
    Majewski, Mariusz
    Malarz, Krzysztof
    ACTA PHYSICA POLONICA B, 2007, 38 (06): : 2191 - 2199
  • [44] Sznajd social model on square lattice with correlated percolation
    Moreira, AA
    Andrade, JS
    Stauffer, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (01): : 39 - 42
  • [45] Dimer site-bond percolation on a square lattice
    M. Dolz
    F. Nieto
    A. J. Ramirez-Pastor
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 43 : 363 - 368
  • [46] A LOWER BOUND FOR PERCOLATION-THRESHOLD OF A SQUARE LATTICE
    ZUYEV, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (05): : 59 - 61
  • [47] CORRELATED SITE-BOND PERCOLATION ON A SQUARE LATTICE
    VIDALES, AM
    FACCIO, RJ
    RICCARDO, J
    MIRANDA, EN
    ZGRABLICH, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 218 (1-2) : 19 - 28
  • [48] Postprocessing techniques for gradient percolation predictions on the square lattice
    Tencer, John
    Forsberg, Kelsey Meeks
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [49] Asymptotic behavior for a version of directed percolation on a square lattice
    Chen, Lung-Chi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (03) : 419 - 426
  • [50] Exact site-percolation probability on the square lattice
    Mertens, Stephan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (33)