PERIMETER ON FRACTAL SETS

被引:1
|
作者
BRAIDES, A [1 ]
DANCONA, P [1 ]
机构
[1] UNIV ROME 2,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
关键词
D O I
10.1007/BF02568263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hausdorff measure with fractional index is used in order to define a functional on measurable sets of the plane. A fractal set, constructed using the well-known Von Koch set, is involved in the definition. This functional is proved to arise as the limit of a sequence of classical functionals defined on sets of finite perimeter. Thus it is shown that a natural extension of the ordinary functionals of the calculus of variations leads both to fractal sets and to the fractional Hausdorff measure.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 50 条
  • [21] Perimeter estimates for reachable sets of control systems
    Cannarsa, Piermarco
    Cardaliaguet, Pierre
    JOURNAL OF CONVEX ANALYSIS, 2006, 13 (02) : 253 - 267
  • [22] APPROXIMATIONS OF FRACTAL SETS
    DUBUC, S
    ELQORTOBI, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (01) : 79 - 89
  • [23] Optimization on fractal sets
    Riane, Nizar
    David, Claire
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2681 - 2700
  • [24] Optimization on fractal sets
    Nizar Riane
    Claire David
    Optimization Letters, 2021, 15 : 2681 - 2700
  • [25] ON SMOOTH INTERIOR APPROXIMATION OF SETS OF FINITE PERIMETER
    Gui, Changfeng
    Hu, Yeyao
    LI, Qinfeng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1949 - 1962
  • [26] The Petty projection inequality for sets of finite perimeter
    Lin, Youjiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [27] The Petty projection inequality for sets of finite perimeter
    Youjiang Lin
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [28] Power law relaxation of perimeter length of fractal aggregates
    Irisawa, T
    Uwaha, M
    Saito, Y
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1996, 4 (03): : 251 - 256
  • [29] A note on fractal sets and the measurement of fractal dimension
    Sandau, K
    PHYSICA A, 1996, 233 (1-2): : 1 - 18
  • [30] First determination of the fractal perimeter dimension of noctilucent clouds
    von Savigny, Christian
    Brinkhoff, Lena A.
    Bailey, Scott M.
    Randall, Cora E.
    Russell, James M., III
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38