Adaptive stability in combinatorial optimization problems

被引:0
|
作者
Ivanko, E. E. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, NN Krasovsky Inst Math & Mech, Moscow, Russia
来源
关键词
stability; combinatorial optimization problem; adaptation of solutions; disturbance of the initial data set;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general approach to the construction of necessary, sufficient, and necessary and sufficient conditions that allow to "adapt" a known optimal solution of an abstract combinatorial problem with a certain structure to a change in the initial data set for a fixed cost function "easily" from the combinatorial point of view. We call this approach adaptive stability. Apparently, it is the first time that the approach is described for an abstract problem in a rigorous mathematical formalization.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [41] Recoverable Robust Combinatorial Optimization Problems
    Kasperski, Adam
    Kurpisz, Adam
    Zielinski, Pawel
    OPERATIONS RESEARCH PROCEEDINGS 2012, 2014, : 147 - 153
  • [42] Artificial Intelligence Problems and Combinatorial Optimization
    Timofieva, N. K.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (04) : 511 - 518
  • [43] Domination analysis of combinatorial optimization problems
    Gutin, G
    Vainshtein, A
    Yeo, A
    DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) : 513 - 520
  • [44] Combinatorial optimization problems in ultrametric spaces
    Missarov, MD
    Stepanov, RG
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 136 (01) : 1037 - 1047
  • [45] Artificial Intelligence Problems and Combinatorial Optimization
    N. K. Timofieva
    Cybernetics and Systems Analysis, 2023, 59 : 511 - 518
  • [46] Persistency in combinatorial optimization problems on matroids
    Cechlárová, K
    Lacko, V
    DISCRETE APPLIED MATHEMATICS, 2001, 110 (2-3) : 121 - 132
  • [47] Preface: Quadratic combinatorial optimization problems
    Punnen, Abraham
    Sotirov, Renata
    Discrete Optimization, 2022, 44
  • [48] Cones of multipowers and combinatorial optimization problems
    Vyalyi, M. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (05) : 647 - 654
  • [49] Metaheuristics for dynamic combinatorial optimization problems
    Yang, Shengxiang
    Jiang, Yong
    Trung Thanh Nguyen
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2013, 24 (04) : 451 - 480
  • [50] An Accelerator Architecture for Combinatorial Optimization Problems
    Tsukamoto, Sanroku
    Takatsu, Motomu
    Matsubara, Satoshi
    Tamura, Hirotaka
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2017, 53 (05): : 8 - 13