PERIODIC FORCING OF A BROWNIAN PARTICLE

被引:93
|
作者
FAUCHEUX, LP
STOLOVITZKY, G
LIBCHABER, A
机构
[1] Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10021
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.5239
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect on a Brownian particle (2 μm diameter polystyrene sphere in water) of an infrared optical tweezer moving in a circle. For a given potential depth of the optical trap, three different regimes for the particle motion are observed as a function of the trap velocity. For small velocity of the tweezer (typically <100 μm/s), the particle is trapped and moves with the beam. For intermediate velocities (between 100 μm/s and 3 mm/s), the particle escapes but is caught by the returning trap: its mean angular velocity scales asymptotically as the inverse of the trap rotation frequency. For large tweezer velocities (>3 mm/s), the particle diffuses along the circle but is confined in the radial direction. We describe these observations by a simple deterministic model. We justify the use of this model solving the corresponding Fokker-Planck equation. © 1995 The American Physical Society.
引用
收藏
页码:5239 / 5250
页数:12
相关论文
共 50 条
  • [21] Nonlinear noninertial response of a Brownian particle in a tilted periodic potential to a strong ac force
    Coffey, W.T.
    Déjardin, J.L.
    Kalmykov, Yu. P.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4599 - 4602
  • [22] EFFECTIVE DIFFUSION-COEFFICIENT FOR A BROWNIAN PARTICLE IN A TWO-DIMENSIONAL PERIODIC CHANNEL
    ZWANZIG, R
    PHYSICA A, 1983, 117 (01): : 277 - 280
  • [23] Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments
    Zhang, Yunxin
    PHYSICS LETTERS A, 2009, 373 (31) : 2629 - 2633
  • [24] Power Absorption Invariance for Brownian Spring Forcing
    Clark, J. M. C.
    Smith, Malcolm C.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4396 - 4399
  • [25] Periodic Forcing of a Heteroclinic Network
    Isabel S. Labouriau
    Alexandre A. P. Rodrigues
    Journal of Dynamics and Differential Equations, 2023, 35 : 2951 - 2969
  • [26] Suppression of Decoherence by Periodic Forcing
    Volker Bach
    Walter de Siqueira Pedra
    Marco Merkli
    Israel Michael Sigal
    Journal of Statistical Physics, 2014, 155 : 1271 - 1298
  • [27] Suppression of Decoherence by Periodic Forcing
    Bach, Volker
    Pedra, Walter de Siqueira
    Merkli, Marco
    Sigal, Israel Michael
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) : 1271 - 1298
  • [28] Periodic forcing of congenital nystagmus
    Clement, RA
    Abadi, RV
    Broomhead, DS
    Whittle, JP
    EXPERIMENTAL CHAOS, 2002, 622 : 149 - 154
  • [29] Periodic Forcing of a Heteroclinic Network
    Labouriau, Isabel S.
    Rodrigues, Alexandre A. P.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (04) : 2951 - 2969
  • [30] Periodic forcing in composite aquifers
    Trefry, Michael G.
    Advances in Water Resources, 22 (06): : 645 - 656