ASYMPTOTIC DIMENSION AND BOUNDARY DIMENSION OF PROPER CAT(0) SPACES

被引:0
|
作者
Chinen, Naotsugu [1 ]
Hosaka, Tetsuya [2 ]
机构
[1] Natl Def Acad Japan, Dept Math, Yokosuka, Kanagawa 2398686, Japan
[2] Shizuoka Univ, Dept Math, Suruga Ku, Shizuoka 4228529, Japan
关键词
asymptotic dimension; CAT(0) space; CAT(0) group; boundary;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate asymptotic dimension of proper CAT(0) spaces and we show that for a proper cocompact CAT(0) space (X , d), the asymptotic dimension asdim(X , d) is greater than the covering dimension dim partial derivative X of the boundary of X.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 50 条
  • [31] Asymptotic dimension of coarse spaces via maps to simplicial complexes
    Cencelj, M.
    Dydak, J.
    Vavpetic, A.
    TOPOLOGY AND ITS APPLICATIONS, 2018, 239 : 226 - 233
  • [32] On the asymptotic behavior of the dimension of spaces of harmonic functions with polynomial growth
    Huang, Xian-Tao
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 762 : 281 - 306
  • [33] Isometry groups of proper CAT(0)-spaces of rank one
    Hamenstaedt, Ursula
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (03) : 579 - 618
  • [34] Furstenberg maps for CAT(0) targets of finite telescopic dimension
    Bader, Uri
    Duchesne, Bruno
    Lecureux, Jean
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1723 - 1742
  • [35] Rank-one isometries of proper CAT(0)-spaces
    Hamenstaedt, Ursula
    DISCRETE GROUPS AND GEOMETRIC STRUCTURES, 2009, 501 : 43 - 59
  • [36] Bounded -Harmonic Functions in Domains of with Asymptotic Boundary with Fractional Dimension
    Bonorino, Leonardo Prange
    Klaser, Patricia Kruse
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2503 - 2521
  • [37] Hyperfiniteness and Borel asymptotic dimension of boundary actions of hyperbolic groups
    Naryshkin, Petr
    Vaccaro, Andrea
    MATHEMATISCHE ANNALEN, 2025,
  • [38] On equivariant asymptotic dimension
    Sawicki, Damian
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (03) : 977 - 1002
  • [39] ON THE ASYMPTOTIC EXTENSION DIMENSION
    Repovs, D.
    Zarichnyi, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (11) : 1766 - 1774
  • [40] On the asymptotic extension dimension
    D. Repovš
    M. Zarichnyi
    Ukrainian Mathematical Journal, 2011, 62