SEMANTICS FOR RELEVANT LOGICS

被引:115
|
作者
URQUHART, A
机构
关键词
D O I
10.2307/2272559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:159 / &
相关论文
共 50 条
  • [21] A Routley-Meyer Type Semantics for Relevant Logics Including Br Plus the Disjunctive Syllogism
    Gemma Robles
    José M. Méndez
    Journal of Philosophical Logic, 2010, 39 : 139 - 158
  • [22] A Routley-Meyer type semantics for relevant logics including Br plus the disjunctive syllogism
    Robles, Gemma
    Mendez, Jose M.
    JOURNAL OF PHILOSOPHICAL LOGIC, 2010, 39 (02) : 139 - 158
  • [23] Subintuitionistic Logics with Kripke Semantics
    de Jongh, Dick
    Maleki, Fatemeh Shirmohammadzadeh
    LOGIC, LANGUAGE, AND COMPUTATION (TBILLC 2015), 2017, 10148 : 333 - 354
  • [24] Logics admitting final semantics
    Kurz, A
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2002, 2303 : 238 - 249
  • [25] Modular semantics and logics of classes
    Reus, B
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2003, 2803 : 456 - 469
  • [26] Matrix semantics for annotated logics
    Lewin, RA
    Mikenberg, IF
    Schwarze, MG
    MODELS, ALGEBRAS, AND PROOFS, 1999, 203 : 279 - 293
  • [27] Fibring logics with topos semantics
    Coniglio, ME
    Sernadas, AC
    Sernadas, CS
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (04) : 595 - 624
  • [28] ALTERNATIVE SEMANTICS FOR TEMPORAL LOGICS
    EMERSON, EA
    THEORETICAL COMPUTER SCIENCE, 1983, 26 (1-2) : 121 - 130
  • [29] Algebraic Semantics for Hybrid Logics
    Conradie, Willem
    Robinson, Claudette
    NONCLASSICAL LOGICS AND THEIR APPLICATIONS, 2020, : 123 - 154
  • [30] Cone Semantics for Logics with Negation
    Oezcep, Oezguer Luetfue
    Leemhuis, Mena
    Wolter, Diedrich
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1820 - 1826