Mechanical Properties and Failure Modes of Additively Manufactured Ti6Al4V Lattice Structures Under Quasi-Static Compressive Loading

被引:0
|
作者
Yang, Yuting [1 ]
Huang, Wei [1 ]
Ma, Yu-E [1 ]
Wang, Shengnan [1 ]
Chen, Xianmin [2 ]
Meng, Yifei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, 127 West Youyi Rd, Xian 710072, Peoples R China
[2] Aircraft Strength Res Inst, Sci Res Management Dept, Xian 710065, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; lattice structures; compressive loading; failure mode; mechanical properties;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Additive manufacturing (AM) has many advantages over traditional manufacturing technologies as it allows the fabrication of lattice structures with complex designs and inherent features within a single part without any separation. Currently, lattice structures have wide application prospects due to their excellent mechanical performance and design freedom. This paper provides both experimental and numerical investigations for the failure behaviors of selective laser melting (SLM) Ti6Al4V lattice structures under uniaxial compressive loading. Lattice structures with different cell topologies and strut radii were chosen to conduct quasi-static compression simulations to examine their mechanical properties and failure modes. It is found that adding Z-direction struts in the loading direction could significantly improve the load-carrying capacity and the most superior mechanical properties were presented by FCCZ. The slopes of the double logarithmic relationship between the equivalent stiffness and the relative density of lattice structures can be distinguished as close to 1.0 and 3.0, implying bending-dominated or stretch-dominated behavior of lattice structures, respectively. For stretch-dominated lattice structures under uniaxial compression, FCCZ, BCCZ and FBCCZ, the failure modes would experience a transformation from strut buckling to fracture with the increase of strut radii, which is different from FCC and BCC demonstrated as the bending-dominated lattice structures.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing
    Ganor, Yaron Itay
    Tiferet, Eitan
    Vogel, Sven C.
    Brown, Donald W.
    Chonin, Michael
    Pesach, Asaf
    Hajaj, Amir
    Garkun, Andrey
    Samuha, Shmuel
    Shneck, Roni Z.
    Yeheskel, Ori
    MATERIALS, 2021, 14 (03) : 1 - 17
  • [42] Mechanical Properties and In Vitro Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds
    Onal, Ezgi
    Frith, Jessica E.
    Jurg, Marten
    Wu, Xinhua
    Molotnikov, Andrey
    METALS, 2018, 8 (04):
  • [43] Quasi-static and high strain rate fracture behaviour of Ti6Al4V
    Verleysen, P.
    Peirs, J.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2017, 108 : 370 - 388
  • [44] Quasi-static torsional deformation behavior of porous Ti6Al4V alloy
    Balla, Vamsi Krishna
    Martinez, Shantel
    Rogoza, Ben Tunberg
    Livingston, Chase
    Venkateswaran, Deepak
    Bose, Susmita
    Bandyopadhyay, Amit
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (05): : 945 - 949
  • [46] Mechanical and biocompatibility studies on additively manufactured Ti6Al4V porous structures infiltrated with hydroxyapatite for implant applications
    Arivazhagan, Adhiyamaan
    Mani, Kalayarasan
    Kamarajan, Banu Pradheepa
    Aashique, A. G. S. Saai
    Vijayaragavan, S.
    Riju, Arthik A.
    Rajeshkumar, G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [47] Influence of unit cell pose on the mechanical properties of Ti6Al4V lattice structures manufactured by selective laser melting
    Bai, Long
    Zhang, Junfang
    Xiong, Yan
    Chen, Xiaohong
    Sun, Yunxi
    Gong, Cheng
    Pu, Huayan
    Wu, Xiaoying
    Luo, Jun
    ADDITIVE MANUFACTURING, 2020, 34 (34)
  • [48] Effect of relative density on the compressive properties of Ti6Al4V diamond lattice structures with shells
    Zhao, Jiaxi
    Liu, Hang
    Zhou, Yang
    Chen, Yefeng
    Gong, Jianming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (22) : 3301 - 3315
  • [49] Quasi-static and dynamic mechanical properties of additively manufactured Al2O3 ceramic lattice structures: effects or structural configuration
    Zhang, Xueqin
    Zhang, Keqiang
    Bin Zhang
    Li, Ying
    He, Rujie
    VIRTUAL AND PHYSICAL PROTOTYPING, 2022, 17 (03) : 528 - 542
  • [50] Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes
    Kahlin, M.
    Ansell, H.
    Kerwin, A.
    Smith, B.
    Moverare, J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142